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 The behavior of reinforced concrete frame structures under seismic loads is 

analyzed using a number of mathematical models of increasing levels of complexity.  The 

first model, represented by the program DRAIN-2DX, idealizes plasticity in members as 

concentrated at the member ends and governed by a simple elastoplastic hysteretic rule with 

no strength or stiffness degradation.  The second model, implemented in program 

IDARC2D, permits yield penetration into the member and accounts for stiffness and 

strength degradation as well as pinching of the hysteresis loops.  The last model is based on 

a fiber formulation and is implemented in the program FIBERC. 

 Several large-scale member and frame laboratory specimens are analyzed with the 

three models under static and dynamic loading.  It was found that in general the beam-

column element of program DRAIN-2DX does not reproduce well the member behavior, 

particularly in terms of stiffness and energy dissipation.  In contrast, program IDARC2D 

generally provides a good estimate of member and frame behavior, including pinching of 

the hysteresis loops, thanks to a set of parameters used to adjust the predicted response.  

Finally, program FIBERC simulates closely the member response when it is governed 

primarily by flexure and axial forces.  It does not, however, provide good predictions when 

pinching of the hysteresis loops occurs. 



 vii

 To extend and improve the performance of the fiber element model implemented in 

program FIBERC, a simple model that accounts for the effects of shear deformations is 

added.  Such a model is based on a truss analogy of the cracked structural members.  A 

series of runs using some of the members and frames studied previously is performed to 

assess the validity of the model as well as its influence on the predicted response. 

 Additionally, a model that estimates the effects of anchorage slip on member 

deformation and stiffness is introduced into the program.  Again, a series of runs is 

performed on the same specimens to evaluate the effectiveness of the model as well as the 

impact on the computed response. 
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CHAPTER 1 

Introduction 

1.1  General Remarks 

 A large number of nonlinear models have been developed and used in research to 

compute the inelastic dynamic behavior of reinforced-concrete building structures subjected 

to earthquake excitation.  One of the most common of such models considers localized 

yielding at the ends of the members (point hinges) and is represented by the computer 

program DRAIN-2D, which is widely used in practice.  Another example uses again point 

hinges for linear members, but adds the possibility of spreading of yielding through a fiber 

model in certain elements.  This model is represented by the computer program IDARC 

which has been gaining acceptance and more widespread use.  The third approach to be 

considered in this work is a complete fiber model.  In this case, all the elements of the 

structure are divided into a number of segments composed of longitudinal fibers.  Yielding 

can spread all along these elements. 

 Studies of the seismic response of structures in the time domain using complete 

fiber models and accounting for combined horizontal and vertical seismic excitations have 

been conducted previously by Papaleontiou (1-12) for steel frames and by Armendariz (1-3) 

for high-strength concrete frames.  A computer program originally developed by 

Papaleontiou and then extended by Armendariz was used to evaluate the dynamic response 

of concrete structures. 

1.2  Earlier Studies Using Fiber Formulations 

 Several studies have used fiber formulations in the past.  The studies by Latona (1-

8), Adams (1-1) and Mark (1-11) at MIT are among the initial applications of the method to 

static and dynamic analysis of steel and concrete frames.  Park, Paulay and their associates 

(1-13, 1-14) at the University of Canterbury in New Zealand have used the fiber model to 

study Reinforced Concrete Sections.  More recently Mahin and his associates (1-5, 1-6, 1-
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18) and Filippou and his associates (1-16) at the University of California, Berkeley, have 

used the fiber model to analyze reinforced concrete sections and members under static and 

dynamic loads.  The versatility of this approach is further demostrated by its application to 

the analysis of composite steel concrete conducted by Kim and Lu (1-7). 

1.3  Previous Research Work 

 Papaleontiou developed the program Fiber to predict the inelastic dynamic behavior 

of steel building structures under seismic loads using a fiber formulation.  He compared this 

response in the linear range to those obtained by frequency-domain, time-domain and modal 

analyses.  He used an elastoplastic (bilinear) model to simulate the stress-strain behavior of 

the steel fibers. 

 Armendariz extended the Fiber program to enable analysis of reinforced concrete 

buildings.  The new program was named FEP.  He developed several mathematical models 

to predict the cyclic stress-strain response of concrete and steel following the findings and 

proposed models of other researchers. Then, he conducted a series of analyses comparing 

the theoretical prediction of these models to the experimental response of standard concrete 

cylinders and reinforcing steel coupons subjected to repeated and cyclic loads. 

 Yu (1-17) used the program FEP to analyze the effect of vertical earthquake 

accelerations in the response of bridges. 

1.3.1  Material Models 

 Several models such as those proposed by Mander et al. (1-10), Ahmad and Shah 

(1-2) and Madas and Elnashai (1-9) were considered by Armendariz for modelling the 

hysteretic behavior of concrete.  The model by Mander (1-10) for concrete was found to 

predict closely the cyclic experimental results (for normal- and high-strength concrete) 

using few parameters and fewer computations than the other models.  Although the Mander 

model produces a stiffer initial response, the subsequent cycles of repeated loading are 

predicted reasonably well. 
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 As for the reinforcement, a bilinear model with kinematic hardening, a modified 

bilinear model, and a model based on the Richard-Abbott equation (1-15) were considered 

and used by Armendariz to predict the results of repeated and cyclic loading of low- high- 

and ultra high-strength steel coupons.  In general, the bilinear and modified-bilinear models 

predict poorly the cyclic response primarily because of their inability to model the 

Bauschinger effect.  However, for cases involving small strains and repeated loading (no 

reversals of load), these two models provide a good prediction.  The model based on the 

Richard and Abbott equation (1-15) produces a close prediction to both the repeated and 

cyclic behavior of all types of steel. 

1.3.2  Moment Curvature Behavior of Sections 

 Moment-curvature analysis of several reinforced concrete beam sections were 

conducted by Armendariz.  Initially, a parametric study was performed in which the 

optimum number of concrete fibers and increment in curvature for analysis were 

investigated.  With as little as 10 concrete fibers, the experimental moment-curvature 

behavior of several sections could be reproduced closely.  Also, close simulation was 

obtained when the curvature increment was between y/50 and y/100, where y is the 

curvature at first yield of the section. 

 Three sets of simply-supported beams under concentrated loads were selected by 

Armendariz to evaluate the accuracy of the fiber model to predict their moment-curvature 

behavior using the Mander model for the concrete fibers and the Richard-Abbott and 

bilinear models for the steel fibers.  In general, the moment-curvature response of the beams 

was predicted well when the Richard-Abbott model was used.  However, using that model, 

the peak moments were occasionally overestimated.  Peak moments were always closely 

predicted when the bilinear models were used, but the theoretical reloading branches were 

very different from the experimental reloading branches. 

 An additional parametric study at this stage demonstrated that the fiber formulation 

reproduces the effects of an axial force on the section, such as the increase in moment 

capacity and the pinching of hysteresis loops.  Furthermore, it was found that if the tensile 

strength of concrete is accounted for, the moment capacity is significantly overestimated.  In 
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order to correct this problem, an iteration scheme must be applied once the section has 

cracked.  Armendariz concluded that tensile strength should better be neglected. 

1.3.3  Load-Displacement Behavior of Members 

 Using the Mander model for concrete fibers and both the bilinear and Richard-

Abbott models for the reinforcing bars, a series of load reversals on beam subassemblages 

was simulated by Armendariz and compared to experimental results obtained by different 

researchers.  For these analyses, members were divided into 19 sections and each section 

was discretized into 20 concrete fibers.  Due to numerical problems in the algorithm, 

Armendariz did not include the descending branch of the concrete model and introduced a 

1% post-yield stiffness in the steel stress-strain curve. 

 Results of three sets of cyclic tests on cantilever beams were simulated using the 

fiber formulation.  Generally, the theoretical predictions were close to the experimental 

results.  However, the peaks of the hysteretic response of some of the specimens were 

overestimated when the Richard-Abbott steel model was used.  In contrast, peaks were 

usually predicted well when the bilinear model was used, in spite of the poor prediction of 

the overall shape of the hysteresis loops. 

1.3.4  Time-Domain Dynamic Behavior of Frames 

 Finally, Armendariz conducted a series of simulations in the time domain of the 

response of several complete structures subjected to earthquake ground motions.  However, 

the actual response of the structures was generally unavailable, and thus, verification of the 

program predictions was not possible.  Nevertheless, many features of the program were 

evaluated.  For these runs, the Mander model for concrete fibers and the modified bilinear 

model for steel were used.  The frames studied were two one-bay one-story frames, one one-

bay three-story buiding frame, and one three-bay ten-story building frame. 

 Top displacement of the frames and the internal forces on certain columns were 

used as control variables.  Several parametric studies were conducted in order to evaluate 

the effect on response of the time increment used in the computation, mass matrix 

formulation (lumped or consistent), step-by-step integration scheme, damping model (mass-
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proportional, stiffness-proportional or Rayleigh), type of ground motion (horizontal, 

vertical, or both), concrete compressive strength (normal- or high-strength), etc. 

 Results obtained by Armedariz indicated that the optimum time increment was 

0.001 sec.  This means that if a smaller time increment is used, the program will yield the 

same prediction.  On the other hand if a larger time step is used, results will differ. 

 Slight differences in response, if any, were observed by changing the mass matrix 

formulation.  When lumped masses were used, the displacement amplitude tended to 

increase; and when consistent masses were used, higher axial forces in columns were 

obtained. 

 Two different step-by-step integration methods were considered: the Constant 

Average Acceleration and the Central Difference Formula.  Similar responses were obtained 

for both integration schemes. 

 For one of the one-bay one-story frames all damping models gave the same 

prediction.  This was interpreted as meaning that the response was controlled by the 

fundamental mode.  For the one-bay three-story frame studied, when the mass-proportional 

damping idealization was considered, a smaller displacement amplitude was observed as 

compared to when stiffness-proportional damping was included. 

 For several of the frames the concrete compressive strength was arbitrarily 

increased from 5 ksi to 12 ksi.  However, no change in member dimensions or 

reinforcement was performed.  In general, significant reductions in the displacement 

amplitude took place as the strength was increased.  Internal member forces increased in 

cases and decreased in others.  Finally, the response of some of the frames to different types 

of ground motions was investigated. 

1.4  Objectives and Scope of this Study 

 The main overall objective of this research study is to improve the state-of-the-art 

modeling of the dynamic inelastic behavior of reinforced concrete structures subjected to 

earthquake ground motions.  For this purpose, several specific objectives are to be met: 
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a. Verify the response obtained by the existing program FEP as developed by 

Armendariz and then, introduce corrections and/or modifications to the program as 

necessary. 

b. Compare the performance of program FEP to that of other programs which have 

been previously calibrated with experimental results.  Such programs should be 

based on phenomenological hysteretic rules or finite-element programs based on 

plasticity constitutive models. 

c. Overcome current program limitations and introduce new modelling capacities.  In 

particular, the following modelling capabilities are to be introduced: 

  Inelastic shear deformations of beams and columns, 

  Anchorage slip of reinforcing bars. 

d. Perform a series of studies on large-scale specimens to evaluate the effect of those 

models on the response of members and frame structures. 
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CHAPTER 2 

Fiber-Element Formulation for Dynamic Analysis 

2.1 General Remarks 

 In the first two sections of this chapter, the theoretical development of the Fiber 

Element model is described including the step-by-step numerical integration of the dynamic 

equations of motion.  The force-displacement relation of the members as well as the 

assembly of the member flexibility and stiffness matrices follow the original development 

by Latona (2-3) and are presented here in a concise form for completeness.  Likewise, a 

brief presentation of the solution to the dynamic equations of motion developed by 

Armendariz (2-1) is given.  The last section of this chapter introduces the material cyclic 

constitutive models for concrete and steel used throughout this study. 

2.2 Member Incremental Stiffness Matrix 

 The analytical approach followed in this study to simulate the inelastic response of 

reinforced concrete building structures to seismic loads is based on the uniaxial stress-strain 

behavior of the materials, namely concrete and reinforcing steel. 

 At a given section of a frame element the section forces are given by 

dN d dA
A

        (2.1) 

dM d y dA
A

       (2.2) 

in which dN is the normal force and dM the bending moment acting on the section, while d 

is the normal stress on the section.  This stress is related to the strain at any point in the 

section by the following relation 

d E dT       (2.3) 
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where ET is the tangent modulus of elasticity.  The strain is in turn a function of the 

curvature and the centroidal strain of the section as shown below 

d d y do         (2.4) 

Replacing the expressions for stress and strain into the equilibrium equations, the final set of 

relationships relating forces and strains are obtained below 

 dN d yd E dAo T
A

        (2.5) 

 dM d y d y E dAo T
A

         (2.6) 

If the cross section is divided into n uniaxial fibers or filaments parallel to the longitudinal 

centroidal axis of the member, these expressions can be discretized as follows 

dN E d A E y d ATi o i Ti i i
i

n

i

n

 

  

11

   (2.7) 

dM E d y A E y d ATi o i i Ti i i
i

n

i

n

  

  2

11

  (2.8) 

where Ai is the area of fiber i, yi is the distance from the centroid of the section to fiber i, and 

ETi is the tangent modulus of elasticity of fiber i. 

 For a given cross section, the centroidal strain and curvature are constants, and 

therefore, the previous expressions can be rearranged as 

dN d E A d E y Ao Ti i Ti i i
i

n

i

n

 

 

11

   (2.9) 

dM d E y A d E y Ao Ti i i Ti i i
i

n

i

n

  

  2

11

  (2.10) 

 Finally, a matrix equality can be established using these two expressions 

dN

dM

a a

a a

d

d
o







 




















11 12

21 22




    (2.11) 
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where the matrix components are 

a E ATi i
i

n

11
1



       (2.12) 

a a E y ATi i i
i

n

12 21
1

  

     (2.13) 

a E y ATi i i
i

n

22
2

1



      (2.14) 

 In incremental form, the above matrix can be rewritten approximately as follows 







N

M

a a

a a
o







 




















11 12

21 22

    (2.15) 

 The increments of strain and curvature can then be found from the force increments 

by inverting the matrix of coefficients aii to obtain a new matrix of coefficients bii as shown 

below 







o b b

b b

N

M









 




















11 12

21 22

    (2.16) 

These coefficients aii and bii are related by the following expressions (found by Cramer’s 

rule): 

b
a

Det11
22       (2.17) 

b b
a

Det12 21
12        (2.18) 

b
a

Det22
11       (2.19) 

where Det is the determinant of the first matrix, 

Det a a a a 11 22 12 21      (2.20) 
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 Equations 2.21 enforce equilibrium between the section forces and the forces at 

member end A (see Figure 2.1) 

 
 

  

N X

M x Y M
A

A A

 

 
     (2.21) 

 V

N

 M

YA

MA

XA A BC

 

Figure 2.1 - Internal forces acting in Member 

 Therefore, a relationship can be drawn between the member end forces and the 

strain and curvature at any section along the member by combining Equations 2.16 and 2.21 

 





 
0 11

21

12

22









 























b

b

b

b

X

x Y M
A

A A

   (2.22) 

 Expanding Equation 2.22, separate expressions for the increments of strain and 

curvature are obtained 

        o A A Ab X b x Y b M   11 12 12   (2.23) 

           b X b x Y b MA A A21 22 22   (2.24) 

 Using the definitions of these two variables, the axial and transverse displacements 

can be involved in the expressions developed so far. 

 



o

d u

dx
      (2.25) 

     


   






d

dx

d

dx

d

dx
v

d

dx
v

2

2
   (2.26) 

 Integrating the displacement differentials along the length of the member (from the 

initial end to the section under consideration)  
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   d u dx u uo

x

u

u

A

a

   




  
0

    (2.27) 

 In a similar fashion, the strains of Equation 2.23 are integrated from the member 

end to the cross section 

          o A A A

xxxx

dx X b dx Y b x dx M b dx     11 12 12
0000

  (2.28) 

 Then, equating the last two expressions, a direct relationship between member end 

forces and member end axial displacements is obtained in Equation 2.29. 

         u u X b dx Y b x dx M b dxA A A A

xxx

     11 12 12
000

  (2.29) 

 If this integral is carried out over the whole member, an expression relating the axial 

displacements at both member ends is found in Equations 2.30 and 2.31 

         u u X b dx Y b x dx M b dxB A A A A

LLL

      11 12 12
000

  (2.30) 

         u u X b dx Y b x dx M b dxA B A A A

LLL

     11 12 12
000

  (2.31) 

 Using Equation 2.26, the differential of the member rotation can be found in terms 

of the curvature as shown below 

   d dx d
d

dx
v    





    (2.32) 

 If Equation 2.32 is integrated once from the member end to the section under 

consideration, a relationship between cross-sectional rotation (at that section and at the 

member end) and the end forces is obtained (Equation 2.34) 

     d
d

dx
v d dx

x

A

  







  

0

   (2.33) 
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       d

dx
v X b dx Y b x dx M b dxA A A

xx

A

x

           21 22
00

22
0

  (2.34) 

 If this integration is carried out along the entire length of the member, a relationship 

between the rotations at both member ends and the member-end forces is obtained 

(Equations 2.35 and 2.36) 

         B A A A A

LLL

X b dx Y b x dx M b dx      21 22 22
000

  (2.35) 

         A B A A A

LLL

X b dx Y b x dx M b dx     21 22 22
000

  (2.36) 

 Integrating Equation 2.32 once more, or more precisely Equation 2.34, it is possible 

to relate the member-end forces to the transverse deflection of the element at both ends 

(Equations 2.38 and 2.39) 

       d v X b dx Y b x dx M b dx dxA A A A

xxxL

v

v

A

    




   











 21 22 22
0000  (2.37) 

       

   

    



v v L X L x b dx Y xb L x dx

M L x b dx

B A A A A

LL

A

L

     

 





21 22
00

22
0

 (2.38) 

or, 

         

   

    



v v L X L x b dx Y xb L x dx

M L x b dx

A B A A A

LL

A

L

     

 





21 22
00

22
0

 (2.39) 

 In order to relate all member end forces to all member end displacements in a matrix 

form, two vectors, one of displacements and one of forces, are defined in Equations 2.40 

and 2.41 
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 

 

  

 

U

u u

v v L
A B

A B A

A B

* 



 



















    (2.40) 

 




F

X

Y

M
A

A

A

A


















    (2.41) 

 These two vectors are related to each other by a flexibility matrix (Equations 2.42 

and 2.43) 

     U f FA
*      (2.42) 

 
 

  

 





u u

v v L

f f f

f f f

f f f

X

Y

M

A B

A B A

A B

A

A

A



 



















































11 12 13

21 22 23

31 32 33

  (2.43) 

where the flexibility matrix is given by Equation 2.44 

     
f f f

f f f

f f f

b dx xb dx b dx

L x b dx x L x b dx L x b dx

b dx xb dx b dx

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

11
0

12
0

12
0

21
0

22
0

22
0

21
0

22
0

22
0




















   





























  

  

  

  (2.44) 

 It is more useful, from a computer programming standpoint, to express forces in 

terms of displacements via a stiffness matrix.  This is done in Equation 2.53 by inverting the 

flexibility matrix 

           F f U K UA  1 * *     (2.53) 

or 
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 




 

  

 

X

Y

M

k k k

k k k

k k k

u u

v v L
A

A

A

A B

A B A

A B



































 



















11 12 13

21 22 23

31 32 33

  (2.54) 

This stiffness matrix can be separated into two components 

 
 
 













X

Y

M

k k Lk k

k k Lk k

k k Lk k

u

v

k k k

k k k

k k k

u

v
A

A

A

A

A

A

B

B

b

























































  
  
  

































11 12 12 13

21 22 22 23

31 32 32 33

11 12 13

21 22 23

31 32 33

 (2.55) 

         F K U K UA AA A AB B     (2.56) 

 The forces at the end B of the member are related to the forces at end A by 

Equations 2.57 

 

 
 

  

X X

Y Y

M L Y M

B A

B A

B A A

 
 

 

    (2.57) 

or in matrix form 









X

Y

M L

X

Y

M

B

B

B

A

A

A























































1 0 0

0 1 0

0 1

    (2.58) 

      F T FB A      (2.59) 

And, using the separation of the stiffness matrix shown in Equation 2.56 

     
          
            
        

 

  

  

  

F T F

F T K U K U

F T K U T K U

F K U K U

B A

B AA A AB B

B AA A AB B

B BA A BB B



 

 

 

   (2.60) 

where 
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 
 
 

     
K

k k Lk k

k k Lk k

Lk k Lk k L k Lk Lk k

BA 

   

   

    



















11 12 12 13

21 22 22 23

21 31 22 32
2

22 23 32 33

 (2.61) 

 
     

K

k k k

k k k

Lk k Lk k Lk k
BB 

     

















11 12 13

21 22 23

21 31 22 32 23 33

  (2.62) 

Finally the member stiffness matrix is 







F

F

K K

K K

U

U
A

B

AA AB

BA BB

A

B









 


















     (2.63) 

      F K U     (2.64) 

2.3 Solution of the Dynamic Equations of Motion 

 Equation 2.65 is the general equation of motion for a multi-degree of freedom 

system subjected to an acceleration at its base.  This expression can be applied to a 

nonlinear system since the restoring force Fn+1 may not be proportional to the system 

displacements (as in a linear system). 

M U CU F M J un n n G

n





 





    



1 1 1

1

   (2.65) 

where, 

J 





























1 0

0 1

0 0

1 0

0 1

0 0

 

     (2.66) 
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and the ground acceleration vector is given by Equation 2.67.  It includes both horizontal 

and vertical motions. 

u
u

u
G

h

v






















     (2.67) 

2.3.1 Constant Average Acceleration Method 

 U n


1  and U n


1  are the nodal relative velocities and accelerations respectively of the 

system at time tn+1.  Fn+1 is a vector of nodal forces at time tn+1, and can be defined 

approximately in terms of the forces at the previous step plus a linear incremental response 

from time tn to time tn+1 by means of a tangent stiffness matrix as shown in Equation 2.68. 

 F F K U Un n n n   1 1tan     (2.68) 

 Introducing this expression into the equation of motion of the system (Equation 

2.65), the following expression is found 

 M U CU F K U U M J un n n n n G

n





 





      



1 1 1

1
tan   (2.69) 

 One of the simplest and most commonly used methods of solution of this problem is 

the so-called Constant Average Acceleration Method given by Equations 2.70 and 2.71. 

U U t U t Un n n n




  
  1 1

1

2

1

2
     (2.70) 

U U t U t U t Un n n n n

  
   1

2 2
1

1

4

1

4
      (2.71) 

Introducing these two expressions into Equation 2.69, a relationship between the 

accelerations of the system at time tn+1 and the accelerations, velocities and displacements at 

time tn is obtained (Equation 2.72) 
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M t C t K U M J u C U t U

K U t U t U F K U

n G

n

n n

n n n n n

 





  





 






  




 








 

 

1

2

1

4

1

2

1

4

2
1

1

2

  

 

tan

tan tan

 (2.72) 

 Using the definition of an equivalent load vector P*n, given by Equation 2.73, and 

an equivalent stiffness matrix K*n, given by Equation 2.74, a final simplified expression is 

obtained (Equation 2.75) in which the only unknowns are the accelerations at time tn+1 

P M J u C U t U K U t U t Un G

n

n n n n n
*

tan  





 




  









   

1

21

2

1

4
    (2.73) 

K M t C t Kn
   

1

2

1

4
2  tan     (2.74) 

K U P F K Un n n n n





  1 tan     (2.75) 

 This last expression is solved for U n


1  as a linear set of simultaneous equations.  

Then, the relative velocities and displacements at time tn+1 are found using the original 

Constant Average Acceleration expressions (Equations 2.70 and 2.71). 

2.3.2 Mass and Damping Matrices 

 The mass matrix for the element can be obtained by assuming that its mass is 

concentrated at the member ends (nodes of structure) or by evaluating a set of mass 

influence coefficients (in a similar fashion as a stiffness matrix is formed).  The first 

procedure generates the lumped-mass matrix given in Equation 2.76.  In this equation,  is 

the mass per unit length and L is the length of the element. 

 The second approach results in the so-called consistent-mass matrices of the 

element using the principle of virtual work (Armendariz, 1995).  Equations 2.77 and 2.78 

show the member consistent mass matrices for translational and rotational inertia, 

respectively.  In Equation 2.78, r is the radius of gyration of the section. 
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M

L

L

I

L

L

I

L
o

o





























1
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 The damping matrix, C, follows an equivalent viscous damping formulation so that 

the orthogonality condition of the mode shapes to the damping matrix, given by Equation 

2.79, is maintained (Xi and Xj are the ith and jth mode shapes or eigenvectors of the structure, 

respectively) and a modal damping for each mode of vibration can be computed (Equation 

2.80) as a function of the ith natural frequency i. 

X C X for i ji
T

j  0    (2.79) 


i

i
T

i

i

X C X


2
     (2.80) 

 Three types of damping matrices that comply with the orthogonality condition are 

often specified, namely a mass-proportional matrix, a stiffness-proportional matrix and a 

Rayleigh matrix. 
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 The mass-proportional damping matrix is given by C = a M in which a is a constant.  

If the mode shapes are normalized with respect to the mass matrix (that is, X M Xi
T

i  1) 

the modal damping becomes 


i

i

a


2
     (2.81) 

and the mass-proportional damping matrix is given by Equation 2.82 (using the first mode). 

C M 2 1 1       (2.82) 

 The stiffness-proportional damping is defined by C b K  in which b is a constant.   

Using Equation 2.80 and the fact that K X M Xi i i  2 , the modal damping becomes 




i
ib


2

     (2.83) 

and therefore, the stiffness-proportional matrix is given by Equation 2.84. 

C K
2 1

1




     (2.84) 

 Finally, the Rayleigh damping matrix is defined as a linear combination of both the 

mass and stiffness matrices as shown in Equation 2.85.  The modal damping is then given 

by Equation 2.86. 

C aM bK       (2.85) 





i

i

ia b
 

2 2
    (2.86) 

 Setting  to a constant value, it can be related to two different frequencies 1 and  

2, as shown in Equations 2.87 and 2.88. 

  
a b

2 21

1




    (2.87) 
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  
a b

2 22

2




    (2.88) 

and then, from these two equations, the values of the constants a and b can be obtained as 

follows 

a 


2 1 2

1 2

  
 

     (2.89) 

b 

2

1 2


 

     (2.90) 

Finally, the damping matrix can be written as Equation 2.91.  In this case, damping in the 

structure increases for frequencies lower than 1 and larger than 2. 

C M K










 












2 21 2

1 2 1 2

  
   

   (2.91) 

2.4 Material Constitutive Models 

2.4.1  Modified Mander Model for Concrete 

 A large number of cyclic uniaxial constitutive models for unconfined and confined 

concrete under compression and tension have been developed in recent decades.  One of the 

most general and versatile ones is that presented by Tsai (2-9).  In this study, a particular 

form of the Tsai model developed by Mander, Priestley and Park (2-4) is used. 

 The stress-strain relationship for monotonic and cyclic loading suggested by 

Mander et al (2-4) for normal strength concrete was modified by Armendariz (2-1) to 

accommodate the behavior of high-strength concrete.  The original Mander stress-strain 

constitutive equation (for monotonic quasi-static loading) is 

f
f xr

r xc
cc

r


 1
     (2.92) 
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where, fc is the compressive stress corresponding to strain c, fcc is the compressive strength 

of confined concrete and x and r are defined as follows 

x c

cc





     (2.93) 

r
E

E E
c

c


 sec

     (2.94) 

 In Equation 2.93, cc is the strain corresponding with the confined concrete strength 

fcc and is described in turn by Equation 2.95.  Ec in Equation 2.94 is the initial tangent 

modulus of concrete in compression, and Esec is the secant modulus at peak stress fcc. 

 cc co
cc

co

R
f

f
 

























1 1     (2.95) 

E fc co 57 000,    for  f psico 6000    (2.96a) 

E fc co  ( , , , )40 000 1 000 000   for 6000 12000psi f psico     (2.96b) 

E
fcc

cc
sec 




     (2.97) 

 The unconfined concrete compressive strength is fco and co is the corresponding 

strain, which is given by Equation 2.98 (2-1) 

co
co

c

a

co

f

E

k

f



4

     (2.98) 

where, ka is taken as 4.26 for crushed aggregate concrete and 3.78 for river gravel aggregate 

concrete. 

 In general terms, the confined concrete strength is given by 

    f f k fcc co l1     (2.99) 

where fl is the lateral stress induced by the confinement and k1 is a constant that depends on 

the concrete mix and the lateral confining pressure (2-4). 
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 The compression unloading branch is given by Equation 2.100 and illustrated in 

Figure 2.2 

f f
f xr

r x
c un

un
r

 
 1

    (2.100) 

where, 

x c un

pl un





 
 

     (2.101) 

r
E

E E
u

u


 sec

     (2.102) 

E
fun

un pl
sec   

    (2.103) 

and (un, fun) is the point on the curve at which unloading starts.  Eu is the tangent modulus 

of elasticity at the onset of unloading and is given by Eu = bcEc, where b = fun/fco  1.0 and c 

= (cc/un)
0.5  1.0. 

 Some of the above expressions depend on the plastic strain pl.  This strain is 

computed as follows: 

 
  
 

pl un
un a un

un c a

f

f E
 




    (2.104) 

  a un oa      (2.105) 

 a o

o un





 
  or  a un

o


0 09. 


    (2.106) 

 Tension loading after compressive unloading is given by 

f ft t
pl

cc

  






1




    (2.107) 
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Figure 2.2 - Unloading and Reloading Rules (taken from 2-1) 

If  pl cc , then f t  0 .  The tensile stress-strain relationship can then be written as 

 f Et t c pl       (2.108) 

E
f

t
t

t




     (2.109) 

 t
t

c

f

E



     (2.110) 

 For reloading, a linear stress-strain relationship, given by Equation 2.111, is 

followed between the point of reloading (ro, fro) and the revised unloading point (un, fnew), 

where fnew is given by Equation 2.112.  This is illustrated in Figure 2.2. 

 f f Ec ro r c ro        (2.111) 

f f fnew un ro 0 92 0 08. .    (2.112) 

E
f f

r
ro new

ro un



 

    (2.113) 
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 The transition between the linear reloading curve and the monotonic stress-strain 

envelope (Equation 2.92) is a third-degree polynomial curve given by Equation 2.114 (2-1). 

f A B X C X D Xc    2 2 2
2

2
3    (2.114) 

where, 

 X c re        (2.115) 

A f re2       (2.116) 

B Ere2       (2.117) 

  C f f E X D X
X

new re re o o

o

2 2
3

2

1
       (2.118) 

   
D

E E X f f

X
r re o new re

o

2 3

2


  
   (2.119) 

X o un re        (2.120) 

 Ere and fre are the tangent modulus and stress at the return point, respectively, and 

correspond to the strain re given by Equation 2.121.  Both Ere and fre are computed using the 

monotonic stress-strain curve (Equation 2.92). 

 re un
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f f
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 









'

     (2.121) 

 Figure 2.3 illustrates the performance of the model under cyclic straining.  Note the 

progressive deterioration in stiffness and stress at large deformations. 
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Figure 2.3 - Model’s Performance under Cyclic Straining 

2.4.2  Menegotto-Pinto Model for Reinforcing Steel 

 As in the case of concrete, a large number of cyclic constitutive models for steel 

have been developed in recent decades.  However, the model proposed by Menegotto and 

Pinto (2-6, 2-7) has been found to give very good predictions of the hysteretic behavior of 

steel (2-5, 2-8), including the Bauschinger effect, while retaining a very simple formulation 

(with very few parameters). 

 One of the main advantages of the Menegotto-Pinto model is that it explicitly 

formulates the stress and tangent modulus as a function of strain and therefore, it is ideal for 

use in algorithms driven by deformations like those developed in this study.  In addition to 

these features, the model requires essentially a single nonlinear expression for loading and 

unloading branches both in tension and compression, making its implementation in a 

computer program a very simple task. 

 The basic expression of the model, given by Equation 2.122, is fundamentally a 

curved transition between two asymptotes: one with an elastic slope Es, and another with a 

post-elastic slope Ep.  The normalized stress * corresponds to the normalized current  strain 

*.  These two depend on the location of the intersection of the two asymptotes (o, o), and 

on the point at which the last strain reversal with stress of equal sign occurred (r, r). 
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Figure 2.4 - Definition of the Menegotto-Pinto Model (Adapted from 2-6) 
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     (2.124) 

 The parameter constant b in Equation 2.122 represents the strain hardening or post-

elastic slope as a fraction of the elastic modulus. 

b
E

E
p

s

      (2.125) 

 R is the parameter that controls the transition curve between asymptotes and 

therefore, models the Bauschinger effect, as shown in Figure 2.4.  R depends on the 

parameter constants Ro, a1 and a2, that are determined by curve-fitting experimental results, 

and on , the difference between the strain at the current asymptote intersection point and 

the strain at the previous maximum (or minimum) load reversal point. 
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

    (2.126) 

 The model, as described above, corresponds to the original formulation by 

Menegotto and Pinto (2-6) and, as mentioned before, reproduces very well the experimental 

cyclic behavior of steel loaded uniaxially.  This is particularly true when kinematic 

hardening is developed, which is precisely the case of reinforcing bars in reinforced 

concrete members, which tend to be strained mainly in tension, as shown in Figure 2.5. 

 However, in certain situations some isotropic hardening can develop, such as for 

bottom reinforcing bars in a section when the bars are 50% or less of the area of top bars.  

These bars may be subjected to compression yielding upon crack closure.  In such cases, the 

original Menegotto-Pinto model will give a poor prediction of the stress-strain response of 

the bottom bars. 

Strain

Stress

 

Figure 2.5 -Performance of Menegotto-Pinto Model under Cyclic Straining in Tension 

 Filippou et al (2-2), following an idea by Stanton and McNiven (2-8), developed a 

modified Menegotto-Pinto model that allows for isotropic hardening.  The modification 

consists of imposing a stress shift st in the position of the post-elastic asymptote after a 

strain reversal. 
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max     (2.127) 
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CHAPTER 3 

Idealizations for Nonlinear Dynamic Analysis 

3.1  General 

 In this chapter the main features of several discrete member models for nonlinear 

dynamic time-history analysis of reinforced concrete structures are presented.  The first such 

model is the “Lumped Plasticity Model” that assumes inelastic behavior is concentrated 

exclusively at the ends of the members while the remaining portions of members continue to 

be elastic.  The second is the “Distributed Plasticity Model”, that allows part of the length of 

the member to experience inelastic deformations. The third, and final model considered 

here, is the fiber model.  For each of these models several computer programs have been 

developed in order to simulate the response of concrete structures. 

 Two of the most widely used computer programs for seismic analysis of reinforced 

concrete structures, each one representing one of the first two models discussed above, are 

discussed in detail in the following two sections.  The first of these programs is DRAIN-2D 

which has been extensively used worldwide since its first release in 1973.  The second 

program, IDARC, was initially released in 1987 and since then has been widely used. 

 In the last section of this chapter, the computer program FIBERC, based in the fiber 

element idealization described in Chapter 3, is presented.  This program is based on the 

program FEP developed by Armendariz (3-3). 

3.2  DRAIN-2DX 

 This is an improved version of the well-known DRAIN-2D program developed at 

the University of California, Berkeley.  The original version of the program by Kanaan and 

Powell (3-4) included truss elements, beam-column elements, infill shear panels and semi-

rigid connections.  Multiple versions have been developed since the first release of the 

program in 1973;  most of them including new and sophisticated elements used to simulate 

particular characteristics of certain structural elements.  The version DRAIN-2DX 
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developed by Allahabadi and Powell (3-2), which constitutes a major revision and 

expansion of the original program, includes several types of linear and nonlinear static and 

dynamic analyses, and additional types of elements.  A second major revision (version 1.10) 

was released in 1993 (3-9, 3-10) but the element types were the same as in the previous 

release.  Recently, a PC-based postprocessor for  DRAIN-2DX running under Microsoft 

Windows was made commercially available (3-1). 

3.2.1  Types of Elements 

 Several types of structural elements are available in this release of DRAIN-2DX.  

These are: the truss element (type 01), the beam-column element (type 02), the simple 

connection (type 04), the structural panel (type 06), the link (type 09) and the fiber-

flexibility model (type 15).   

3.2.2  Types of Analyses 

 While the original version of the program had a limited number of analysis types, 

the revised version includes an important set of analysis types:  These are: a static gravity 

analysis (linear elastic structure), static nonlinear analysis (for static lateral load), mode 

shapes and periods, response spectra analysis (linear dynamic structure), ground 

acceleration (nonlinear dynamic) analysis, initial velocity analysis (nonlinear dynamic for 

impact or energy absorption capacity) and ground displacement analysis (nonlinear 

dynamic). 

 In addition to the analyses listed above, P-Delta effects can be considered, 

overshooting during step-by-step solution is checked, and energy balance is computed. 

3.2.3  Beam-Column Element Model 

 The beam-column element (element type 02) has both axial and flexural stiffness, 

and can accommodate shear deformations and the effects of eccentric end connections and 

rigid joint zones.  Yielding is concentrated exclusively at plastic hinges located at one or 

both ends of the member.  Post-yield member stiffness (due to reinforcement strain 

hardening, for instance) is simulated by introducing an elastic element parallel to the 

inelastic elastoplastic member, as shown schematically in Figure 3.1. 
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Figure 3.1 - Parallel-Component Element Model (adapted from 3-9) 

 The moment-curvature or moment-rotation behavior of the members is then a 

combination of an elastic component and an elastic-plastic component (Figure 3.2).  The 

resultant bilinear member response is specified in terms of moment-rotation of the member 

ends, and therefore, the element idealization is not directly applicable if the actual applied 

moments or member strength vary along the length of the element. 
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rbEI
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Figure 3.2 - Section response Idealization (adapted from 3-9) 

 Figure 3.3 shows the hysteretic moment-curvature or moment-rotation response of 

the member, again as a combination of the elastic and elastoplastic components.  No 

degradation in stiffness or strength is considered during the cyclic response of the elements. 
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Figure 3.3 - Hysteretic Response of Parallel-Component Element (adapted from 3-9) 
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Figure 3.4 - Yield Surfaces for Steel and Reinforced Concrete Columns (adapted from 3-9) 

 The model does not consider inelastic axial deformations, and the axial load-

moment interaction is accounted for in just an approximate manner by means of yield 

surfaces.  The yield surfaces for steel and reinforced concrete columns are shown in Figure 

3.4.  Whenever a combination of bending moment and axial load in the column reaches the 

yield surface, a plastic hinge is formed in the member. 
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 Figure 3.5 shows the yield surface for the beams.  In this case, no interaction of 

moments and axial load is present, and the plastic hinge is formed as soon as the yield 

moment (My
- or My

+) is reached. 
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Figure 3.5 - Yield Surfaces for Beams (adapted from 3-9) 

 For the dynamic response, DRAIN-2DX assumes the mass lumped at the joints 

(nodes). The step-by-step integration uses the constant average acceleration method, and at 

each step an equilibrium correction is performed using the unbalanced forces of the previous 

step. 

3.3  IDARC2D 

 This program was developed at the State University of New York at Buffalo as a 

tool to evaluate the inelastic response of a reinforced concrete structure and to estimate the 

damage generated in its elements.  The original version of this program by Park, Reinhorn 

and Kunnath (3-8), called simply IDARC, was intended for analysis of reinforced concrete 

frame or shear-wall buildings.  Most formulations for the capacity of the elements were 

empirical.  It included element damage computation capabilities and the ability to analyze 

test subassemblages. 
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 Version 3.0 by Kunnath, Reinhorn and Lobo (3-5), released in 1992, improved the 

evaluation of section capacities, introducing a sectional fiber model.  An updated Version 

3.1 (3-6) was released subsequently. 

 Finally, version 4.0 (3-11), renamed IDARC2D, expanded the analysis capabilities 

of the program to include steel structures as the result of adding new general hysteretic 

models.  Also, new elements like braces, masonry infills and dampers were introduced. 

3.3.1  Types of Elements 

 Most element types were originally developed to simulate the behavior of 

reinforced concrete members.  The available elements at present are:  beam-column 

(inelastic single-component element with distributed plasticity), shear wall (made up of 

shear and flexure springs connected in series), inelastic axial element (shear-wall edge 

column), transverse beams, discrete springs, masonry infill walls and dampers (visco-elastic, 

frictional and hysteretic). 

3.3.2  Types of Analyses 

 The analysis modules are:  nonlinear static (initial stress states under dead and live 

load), failure/collapse (monotonic lateral load or ‘pushover’), quasi-static nonlinear cyclic 

analysis (load or displacement controlled), incremental nonlinear dynamic response (for 

horizontal and vertical seismic excitations) and damage estimation. 

3.3.3  Beam-Column Element 

 This is a simple flexural spring element that includes the effect of shear 

deformations.  The axial deformation is considered in the column but neglected in the 

beams.  The interaction of axial load and bending moment is not considered directly in the 

step-by-step analysis.  However, the effect of axial load in moment capacity is included. 

 As shown schematically in Figure 3.6, a distributed flexibility model is used instead 

of concentrated plastic hinges.  Figures 3.6a and 3.6b display the typical deformed shape 

and moment distribution, respectively, for a beam under seismic loads.  The flexibility along 

the element is assumed to vary linearly from the member ends to the locations at which the 
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cracking moment has been reached (Figure 3.6d), while it is assumed constant and equal to 

the elastic flexibility in the middle portion. 

 As the end moments increase, the plastified regions grow and yield penetration is 

modeled as shown in Figure 3.6e.  Finally, the flexibility member matrix is found by 

numerical integration. 

 Perfect hinges can be specified at either end of a member (as moment releases).  

Also, discrete inelastic springs can be specified at member ends with their moment-rotation 

response characterized by a non-symmetric tri-linear envelope with degrading parameters.  

Using these springs, joint distortions and pull-out response can be modeled. 

 The mechanical properties of the elements were defined in the original version by 

empirical relationships (3-8).  In version 3.0, these were replaced by a more rational 

procedure using a fiber model.  Additionally, the user can input directly cross-sectional 

strength and rotation properties. 

 The hysteretic modeling in the original version was based on a three-parameter 

model.  For version 3.0 a general-purpose versatile model was developed which uses four 

control parameters.  The characteristics that are modeled are stiffness degradation, strength 

deterioration and crack closure/bond-slip/pinching.  These features of the program are 

discussed in detail in the next section. 

3.3.4  Hysteretic Modeling 

 The hysteresis model implemented in the program is based on a non-symmetric 

trilinear backbone curve and a set of rules for loading and unloading governed by four 

parameters defined by the user.  These parameters control the stiffness degradation, the 

strength degradation and the pinching of the hysteresis loops for the member response.  

Figure 3.7 shows the general hysteretic response of the model. 
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Figure 3.6 - Spread Plasticity and Yield Penetration Idealization (adapted from 3-11) 

 The stiffness degradation parameter HC determines the stiffness reduction as a 

function of the level of ductility in the member by having all unloading paths from the 

backbone curve aim at the same point (Figure 3.8) and therefore, resulting in degrading 

stiffness as deformations increase.  According to the authors (3-5), HC normally lies 

between 1.5 and 3.0. 
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Figure 3.7 - Hysteretic Rules (adapted from 3-11) 

 Strength deterioration depends on the dissipated energy and the ductility attained in 

the member.  The expression used in the program to estimate strength decay is (see Figure 

3.8) 

 F F HBE E HBDnew c    max .10   

where HBE is a user parameter that controls the strength deterioration as a function of the 

dissipated energy and HBD is another user parameters that depends on the maximum 

attained curvature ductility.  In this case, the authors recommend (3-5) using values of 0.1 

for HBE and 0.0 for HBE for usual situations (or when no experimental data are available) 

and a value of 0.5 for both parameters when the response is expected to exhibit considerable 

strength deterioration. 

 The pinching or slip parameter reduces the stiffness of the load reversal (reloading 

path after crossing the zero moment axis) up to the cracking deformation, after which the 

loading path is re-directed towards the maximum point of the previous cycle.  Such 

reduction in stiffness is controlled by the parameter HS as shown in Figure 3.9.  The authors 

suggest (3-5) a value of 0.5 for the parameter HS. 
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Figure 3.8 - Stiffness and Strength Degradation Parameters (adapted from 3-11) 

 For the dynamic response, the program IDARC2D, as DRAIN-2DX, assumes mass 

lumped at the joints (nodes). Also, the step-by-step integration uses the constant average 

acceleration method and at each step an equilibrium correction is performed using the 

unbalanced forces from the previous step. 
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Figure 3.9 - Slip Degradation and Pinching Parameter (adapted from 3-11) 

3.4  FIBERC 

 In contrast to the models presented in Sections 3.2 and 3.3, material nonlinearity 

can occur along the element in distributed plasticity models.  This is achieved by monitoring 

the behavior of the elements at several locations (slices) along their length, where the cross-
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section is discretized into fibers that are assumed to be stressed and strained uniaxially in the 

direction parallel to the longitudinal axis of the element, as shown in Figure 3.10. 

 The program FIBERC was developed to implement a distributed-plasticity solution 

using the fiber-element model.  The program is based on the program Fiber developed by 

Papaleontiou (3-7) using the Fortran computer language, and extended by Armendariz (3-3) 

at the University of Texas at Austin. 

3.4.1  Types of Elements 

 The program FIBERC has a single frame member type that is used to model both 

reinforced concrete columns and beams.  The cross section geometry of the elements is 

completely general since both the width an thickness of the concrete fibers are specified by 

the user.  Likewise, the location and number of the steel reinforcement fibers is arbitrary and 

decided by the user. 
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Figure 3.10 - Cross-Section Geometry and Fiber Idealization 

 The elements are modeled as shown in Figure 3.11.  Each member is divided into 

three regions or “segments”.  Such segments are used to define different longitudinal (and 

transverse) reinforcement ratios and/or patterns.  The segments are divided in turn into slices 

or “sections”.  In the current version of the program the number of sections per segment is 

defined by the user.  However, a maximum of 20 sections for the entire member is allowed. 



 40

 Finally, each section is composed of a number of concrete strips and steel filaments 

or “fibers” as shown in Figures 3.10 and 3.11.  The concrete are rectangular and therefore, 

are defined by their width and depth.  The steel fibers are defined by the diameter and 

number of bars for each layer of reinforcement.  The location of concrete and steel fibers is 

completely arbitrary and decided by the user. 

 Because the behavior of the fibers can be specified to be linear elastic during the 

analysis, a new type of element can be created from the beam-column described above, to 

simulate elastic springs. 

Segment 1

Segment 2

Segment 3

Node I

Node J

Slices

Fibers
 

Figure 3.11 - Fiber Element Idealization 

3.4.2  Types of Analysis 

 The analysis options available are: nonlinear static for gravity loads (all loads 

applied in a single step), nonlinear quasi-static cyclic analysis (load or displacement 

controlled) and nonlinear incremental dynamic analysis (for horizontal and vertical seismic 

excitations).  The gravity load analysis can precede either the quasi-static or the dynamic 

analyses. 
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3.4.3  Solution Algorithm 

 For each structural member (beams and columns) the flexibility matrix is assembled 

according to Equation 2.44 using numerical integration (trapezoidal rule).  Then, the 

member stiffness matrix is obtained as in Equation 2.63.  Finally, the tangent stiffness 

matrix for the complete structure is assembled from the element matrices.  For dynamic 

analysis, the damping and mass matrices are also formed as described in Section 2.3.2 

 The differential equations of motion are solved by direct integration using the 

constant average acceleration method described in Section 2.3.  The tangent stiffness 

formulation and pure incremental procedure are used.  To avoid developing large 

unbalanced forces during the solution, a very small time step (of the order of 0.001 second) 

is used. 

 Nonlinear material behavior is taken into account assuming that the fibers respond 

uniaxially in the direction parallel to the member longitudinal axis.  Cyclic stress-strain 

relationships for concrete and for reinforcing bars follow the models described in Section 

2.4.  In addition, the modified bilinear model introduced by Armendariz (3-3) and a simple 

bilinear model with kinematic hardening are available for the reinforcing steel. 

3.4.4  Transition from FEP to FIBERC 

 The following enhancements were made to the program as part of the initial phase 

of the research study: 

 An extensive reorganization and “clean up” of the code was conducted.  The 

program was divided into three modules:  FRC01, that contains the main program as well as 

general input and output routines; FRC02, with the main analysis subroutines; and FRC03 

with the routines for material models. 

 The input data routine was rewritten for easier data specification.  Some details of 

the input are given in Section 3.4.5.  Output routines were also rewritten to print an echo file 

and up to 20 response files in a single run.  Several output options were implemented 

(history of node displacements, member forces, equivalent EA, concrete fiber stress-strain, 
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steel fiber stress-strain, moment-curvature of sections and moment-axial load-shear of 

section).  Section 3.4.6 provides some details about the output files. 

 A new option for selecting the system of units was made available.  The user can 

choose either US customary units or the International (SI) system of units. 

 A PC-based version with some user interaction running under Microsoft Windows 

was created. 

 The material models for steel and concrete were reviewed.  A new model for steel 

bars was introduced based on the Menegotto-Pinto formulation.  Section 2.4.2 describes the 

details of that model. 

 The number of sections per segment as well as the total number of sections along 

the member are now variable.  However, they are the same for all elements. 

 Some or all elements can behave elastically during a run.  This feature can be used 

to introduce elastic springs or stiff supports. 

 Finally, a new analysis option was introduced for quasi-static loading in a force- (or 

displacement-) controlled mode. 

3.4.5  Input Data Description 

 The current version of program FIBERC allows the user to specify the structural 

geometry in two different forms.  In the first option (MSTR = 1), the structural geometry 

must be a complete orthogonal frame.  Elements (beams and columns) are input by blocks 

defined by floor and column line numbers.  Furthermore, all base joints are assumed rigidly 

fixed and all other joints are considered free. 

 The second input mode (MSTR = 2) allows the user to specify the geometry of a 

bridge structure in a very simple fashion.  In this case, each column can be given a different 

height.  If the number of bays is greater than the number of columns, the ends of the 

extreme bays are supported not on columns but on simple supports to model abutments. 
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 In Appendix A, the input files needed to run program FIBERC in mode are described 

in detail.  Each file is specified line by line, and repeated lines are noted.  A short definition 

of each variable is also given. 

3.4.6  Output Description 

 One or more output files are created during the run.  The file 

<PROJECTNAME>.ECH is always generated.  This file contains an echo of the input data 

(parameters and structural geometry) as well as the results of the eigenvalue problem and 

the results of the static analysis of the structure under gravity loads. 

 Up to 20 additional output files corresponding to different nonlinear dynamic 

responses can be generated.  Appendix A describes the types of responses that can be 

generated, together with the file extensions and the parameters required for each selection.  

File names are composed of the four characters of the variable PROJECTNAME plus a 2-

digit counter and an extension. 
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CHAPTER 4 

Analysis of Sections, Members and Frames 

4.1  General Remarks 

 In the study by Armendariz (4-4), results of a number of quasi-static tests on beams 

and columns were presented.  The program FEP was used to simulate the results of those 

tests with relative success.  Armendariz also presented the response of several frames to 

ground motions and again, a simulation of the results using program FEP was performed.  

However, in this case, the comparison of experimental and theoretical results was not clear, 

as discussed in Section 1.3.4. 

 In this chapter, some of the member tests analyzed by Armendariz are studied again, 

this time using the programs IDARC2D, DRAIN-2DX, and FIBERC.  Section 4.2 presents 

some of the analyses in terms of moment-curvature response of the critical cross-section of 

specimens, while Section 4.3 presents load-deflection behavior.  Additionally, the results of 

static and dynamic frame tests are presented and then analyzed using the three programs.  

Emphasis is given to large-scale laboratory tests to avoid size effects on specimen response 

(4-1). 

 A literature review of recent full-scale reinforced concrete frame tests was 

conducted as part of the research described in this chapter.  However, very few such tests 

were found to be available in the literature.  Probably the most significant test to date is that 

of the 7-story building at the Building Research Institute of Japan (4-3) conducted during 

the early 1980s.  More recently (late 1980s), a 2-story plane frame was tested by Vecchio 

and his associates at the University of Toronto (4-10, 4-21).  At the beginning of this decade 

(1990s), a full-scale laboratory test of a 5-story masonry building was performed by Seible 

and his collaborators at the University of California at San Diego (4-20).  At about the same 

time, a four-story building was tested at the European Laboratory for Structural Assessment 

(ELSA) of the European Commission in Italy (4-12, 4-14).  Finally, during the mid 1990s, a 
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series of field tests were conducted by Eberhard on an existing bridge in Washington state 

(4-8, 4-9). 

 The 7-story Japanese building contained a central structural wall that dominated, to 

a large extent, the response of the structure and therefore, will not be considered in this 

study.  The bridge tests by Eberhard introduced effects of the soil in the response of the 

structure and therefore, increase the uncertainty in analysis of the structural behavior.  The 

test by Seible was conducted on a masonry-wall building and thus, is beyond the scope of 

this research.  As a result of these considerations, the only large-scale frame systems 

identified as suitable for use in this study were the 2-story frame tested by Vecchio, and the 

four-story European building.  They are described and analyzed in Sections 4.4 and 4.5. 

 In all the comparisons presented in this chapter with two series of data, the 

experimental results will be represented by dashed lines and the numerical prediction by 

solid lines, unless otherwise stated. 

4.2  Moment-Curvature Response of Sections 

4.2.1  Beam #24 by Park, Kent and Sampson (4-15, 4-16) 

 The simply-supported beam shown in Figure 4.1 was tested at the University of 

Canterbury in New Zealand under displacement-controlled load reversals by means of screw 

jacks placed at the top and bottom of the column stub.  This test was part of a large series of 

tests performed to investigate cyclic flexure yielding in reinforced concrete beams. 

 The compressive strength fc of the concrete used was 6.95 ksi, while the yield 

strengths fy of the top and bottom reinforcing bars were 47.5 ksi and 49.2 ksi, respectively.  

The ultimate strengths of the top and bottom reinforcing bars fu were 68.5 ksi and 69.7 ksi, 

respectively.  Though the strain hardening modulus was not reported by Park et al. (4-15), 

the strain at the onset of strain hardening was measured as approximately 0.033 in/in for all 

bars. 

 The load history consisted of a cycle up to approximately initial yielding and then 

two cycles well into the inelastic range to produce ultimate response. 
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Figure 4.1 - Experimental Set-up (adapted from 4-15) 

 Geometry of the cross section and reinforcement of the tested beam is shown in 

Figure 4.2.  The reinforcement was continuous along the beam, and both the positive and 

negative-moment reinforcement ratios  were equal to 0.012. 
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Figure 4.2 - Beam Geometry and Reinforcement (adapted from 4-15) 

 Figure 4.3 shows the experimental moment-curvature response at the face of the 

loading stub.  Note that the section did not reach its expected strength in either the positive 

or negative directions.  Using the rectangular stress block recommended in the ACI code (4-

2), the resisting moments of the section (with no strength reduction factors) are 126 kip-in 
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for positive bending and 122 kip-in for negative bending.  However, the maximum 

experimental positive and negative moments were 110 kip-in and 95 kip-in, respectively. 
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Figure 4.3 - Experimental Response (adapted from 4-15) 

 The analytical prediction of the response of the section provided by program 

IDARC2D is shown in Figure 4.4 compared to the experimental results.  For this figure the 

IDARC2D model assumed no strain hardening in the reinforcing bars and the default values 

of the hysteretic parameters (provided in Section 3.3.4) were used. 

 The prediction of the response during the initial cycle is dominated by the 

uncracked stiffness which is significantly larger than the experimental stiffness.  Although it 

is clear that the experimental strength was over-predicted (by approximately 10% in the 

positive direction and 25% in the negative direction), IDARC2D estimates closely the 

expected ACI strength. 

 The predicted unloading stiffnesses are generally somewhat larger than those 

obtained during testing.  In contrast, the predicted reloading stiffnesses are considerably 

smaller than the experimentally measured stiffnesses, introducing pinching in the computed 

hysteresis loops. 
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Figure 4.4 - IDARC2D Prediction (Before Adjusting Hysteretic Parameters) Compared with 
Measured Response 
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Figure 4.5 - IDARC2D Prediction (After Adjusting Hysteretic Parameters) Compared with 
Measured Response 

 These differences in unloading and reloading stiffnesses cause a significant 

reduction in the size of the simulated hysteresis loops and therefore, the computed response 

underestimates the energy dissipation of the beam. 
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 In an attempt to match the beam’s cyclic behavior the hysteretic parameters of the 

program were adjusted.  The energy-related strength deterioration parameter HBE was set to 

0.0, while the stiffness degradation parameter HC was set to 1.5.  The computed response of 

the modified IDARC2D model is shown in Figure 4.5.  Despite the fact that no slip or 

strength deterioration is allowed in the model (HS was still set to 1.0), the predicted stiffness 

upon load reversal is always lower in the IDARC2D model than in the actual test, 

introducing pinching into the computed response. 
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Figure 4.6 - FIBERC Prediction Compared with Measured Response 

 Figure 4.6 shows the prediction of the section’s response provided by program 

FIBERC compared with the experimental result.  Similarly to the previous computer model, 

no strength hardening in the reinforcing bars was provided.  The loading and unloading 

stiffness during the initial cycle is very closely predicted.  As before, the moment strength is 

over-predicted (by approximately 30%), but this time it is even larger than the ACI estimate 

(by approximately 15% in the positive direction and 5% in the negative direction).  

However, the analytical unloading stiffness for all cycles is nearly parallel to the 

experimentally-obtained stiffness.  Likewise, the predicted stiffness upon reversal of the 

load, is very close to that measured in the test.  Though the overall shape of the FIBERC 

hysteretic cycles is quite similar to the experimental loops, an abrupt stiffness change upon 

crack closure is evident in the computed response which is absent in the test result. 
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4.2.2  Beam with Axial Load by Aoyama (4-5) 

 The test configuration is shown in Figure 4.7.  The experiment, conducted at the 

University of Illinois, consisted of a single displacement-controlled cycle of transverse load 

while maintaining a constant axial load of 36 kips, which corresponded to a compression 

level of approximately 0.10fcAg. 
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Figure 4.7 - Test Configuration (adapted from 4-5) 

 The average compressive strength of the concrete used was 4.9 ksi, and the average 

yield strength of the reinforcing steel was 50 ksi.  No ultimate strength, strain at onset of 

strain hardening, or strain hardening modulus were reported by Aoyama (4-5). 

 The cross section of the tested beam is shown in Figure 4.8.  Longitudinal 

reinforcement was continuous along the beam, and both the positive and negative 

reinforcement ratios  were equal to 0.015. 
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Figure 4.8 - Beam Geometry and Reinforcement (adapted from 4-5) 
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Figure 4.9 - Experimental Response (adapted from 4-5) 

 The hysteresis loop obtained during the test is presented in Figure 4.9, and 

corresponds to the moment-curvature behavior of the midspan section of the beam.  The 

expected flexural strength for the pure bending condition (no axial load) is 396 kip-in, and is 

552 kip-in for the constant axial load case.  This latter strength was slightly exceeded (by 

2% and 4%) for both the positive and negative directions.  The response of the beam clearly 

exhibited some “pinching” of the hysteresis loop, which was likely a function of the axial 

load. 
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Figure 4.10 - IDARC2D Prediction (Before Adjusting Hysteretic Parameters) Compared 
with Measured Response 
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Figure 4.11 - IDARC2D Prediction (After Adjusting Hysteretic Parameters) Compared with 
Measured Response 

 Figure 4.10 presents the computed response of the beam using program IDARC2D 

with the hysteretic parameters set at their default values.  Although the strength of the 
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member is closely predicted, the unloading and reloading stiffnesses are overestimated.  

Therefore, the pinching of the computed hysteresis loops is not accurately reproduced. 

 The IDARC2D model was then modified in an attempt to obtain a more accurate 

computed response.  A stiffness-degradation parameter HC of 1.4 and a pinching parameter 

HS of 0.4 were used in the modified model while the strength deterioration parameters were 

set at the default values. 

 As shown in Figure 4.11, after adjusting the hysteretic parameters the program 

IDARC2D generally predicts the experimental response of the beam section.  The main 

differences between the predicted and actual loop are the initial strength and stiffness, which 

are both underestimated, and the stiffness of the second loading cycle (in the positive 

direction) which is overestimated. 
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Figure 4.12 - FIBERC Prediction Compared with Measured Response 

 Finally, Figure 4.12 illustrates the predicted moment-curvature response produced 

by program FIBERC.  In this case, both strength and stiffness are very closely predicted in 

both directions, except for the stiffness of the second loading cycle (in the positive 

direction) which is again overestimated.  This seems to correspond with a faster crack 

closure in the analytical model than in the actual test. 
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4.3  Load-Displacement Response of Members 

4.3.1  Cantilever Beam G4 by Hanks (4-11) 

 The test performed on this beam, shown in Figure 4.13, was part of a large testing 

program conducted at the University of Kansas.  The compressive strength of the concrete 

used was 12.7 ksi, while the yield strength of the reinforcing steel was 69.4 ksi.  Strain at 

the onset of strain hardening of the reinforcing bars was approximately 0.008 in/in, and the 

strain hardening modulus was approximately 1200 ksi or 4% of the elastic modulus (Es = 

29000 ksi).  Ultimate strength of the reinforcing bars was not reported. 
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Figure 4.13 - Schematic of Experimental Set-up (adapted from 4-11) 

 

 The cross section of the tested beam is shown in Figure 4.14.  The longitudinal 

reinforcement was continuous along the beam.  The positive reinforcement ratio  was 

0.010, while the  negative reinforcement ratio was 0.005. 
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Figure 4.14 - Beam Geometry and Reinforcement (adapted from 4-11) 

 The load-displacement response of the beams to the first three cycles of 

displacement-controlled loading are shown in Figure 4.15.  During the initial cycle the beam 

yielded, and in the two subsequent cycles a very large drift ratio of approximately 3% was 

imposed on the beam in both directions.  These last two cycles exhibited by pinching of the 

hysteresis loops caused mainly by shear cracking.  This was due to the fact that this was a 

relatively deep beam;  its span to section depth ratio was 3.33. 

 The author of the test reported (4-11) a flexure-shear crack across the entire cross 

section and some spalling of concrete cover during the first cycle of load.  With subsequent 

cycles, diagonal web cracks formed and further spalling occurred exposing the bottom 

reinforcement near the support face.  At the end of the tests, wide inclined cracks and 

buckled reinforcement were clearly visible. 
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Figure 4.15 - Experimental Response (adapted from 4-11) 

 The computed positive flexural strength for the section was 1258 kip-in, while the 

negative flexural strength was 680 kip-in.  These moments correspond with beam tip loads 

of 21.0 and 11.3 kips, respectively.  However, the maximum experimental loads observed 

were 24.5 kips in the positive direction and 15.5 kips in the negative direction.  The increase 

in capacity was mainly due to strain hardening of the reinforcement. 

 Figure 4.16 presents the prediction of the load-displacement behavior computed 

using program IDARC2D, together with the experimental response, for a model in which 

the hysteretic parameters were set to their default values. 

 For this model, the levels of strength for the large-displacement cycles are generally 

well-estimated (within 10%) in the negative direction but not very well in the positive 

direction (within 20%).  In contrast, the stiffnesses at loading, unloading and load reversal 

are not accurately predicted.  In particular, the loading and unloading stiffness for the first 

cycle are significantly overestimated by IDARC2D.  On the other hand, the estimated 

unloading stiffness from the maximum positive moment for the two subsequent cycles is 

somewhat lower than the experimentally obtained stiffness.  Finally, unloading stiffness 

from the maximum negative moments is again overestimated. 
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Figure 4.16 - IDARC2D Prediction (Before Adjusting Hysteretic Parameters) Compared 
with Measured Response 
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Figure 4.17 - IDARC2D Prediction (After Adjusting Hysteretic Parameters) Compared with 
Measured Response 

 Figure 4.17 shows the computed response of the beam after the original IDARC2D 

model was modified using a stiffness-degradation parameter HC of 3.0.  The other 
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parameters were maintained at their default values.  This model gave, on average, a closer 

prediction (in terms of stiffness) to the experimental response. 
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Figure 4.18 - DRAIN-2DX Prediction Compared with Measured Response 

 A model of the beam using the program DRAIN-2DX was developed and subjected 

to the same history of displacement-controlled loading as the test beam.  The computed 

load-displacement response is shown in Figure 4.18 together with the experimental 

response.  In general, the strength of the beam is well estimated.  However, the elasto-plastic 

hysteresis loops do not reproduce well the stiffness degradation.  Therefore, the energy 

absorption of the beam is grossly overestimated. 

 The prediction of the load-displacement behavior obtained using the program 

FIBERC is shown in Figure 4.19.  In this case, the overall shape of the experimental and 

computed hysteresis loops is relatively similar.  However, the stiffness and strength of the 

initial loading branch in the positive direction are over-estimated.  During subsequent 

cycles, both strengths and stiffnesses in the negative direction are close to the experimental 

values, except for the reloading stiffness upon reversal of load after the maximum negative 

moment excursion.  In particular, the increase in stiffness after crack closure is again 

overemphasized.  Furthermore, the strength in the positive direction is always over-

estimated by approximately 20%. 
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Figure 4.19 - FIBERC Prediction Compared with Measured Response 

4.3.2  Cantilever Beam by Popov, Bertero and, Krawinkler (4-19) 

 This beam was tested at the University of California, Berkeley, to investigate the 

effect of large shear forces on the strength, stiffness and energy absorption capacity of 

reinforced concrete beams.  A schematic of the test set-up as well as the geometry and 

reinforcement in the beam are shown in Figures 4.20 and 4.21. 

 The longitudinal reinforcement is continuous along the beam, and both the positive 

and negative reinforcement ratios  are equal to 0.016.  The specimen analyzed here, Beam 

35, is one of three tested in the study by Popov et al. 

 The concrete compressive strength was 3.86 ksi at the time of testing.  Yield 

strength was 67.0 ksi for the longitudinal bars and 53.0 ksi for the stirrups.  Ultimate steel 

strength was 103.0 ksi for the longitudinal bars and 90.0 ksi for the stirrups. 
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Figure 4.20 - Experimental Set-up (adapted from 4-19) 

 Neither the strain at the onset of strain hardening nor the strain-hardening modulus 

were explicitly reported.  However, a tension stress-strain plot for the longitudinal 

reinforcement was included in an appendix of the report by Hanks (4-19).  From that 

diagram, the strain at the end of the yield plateau was 0.009 in/in, and the strain-hardening 

modulus was approximately 3.6% of the elastic modulus. 
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Figure 4.21 - Beam Geometry and Reinforcement (adapted from 4-19) 
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 Figure 4.22 shows the experimental load-displacement response of the beam.  

Pinching of the hysteresis loops is evident and occurred due to the shear strength 

deterioration in the element.  The computed flexural capacity of the beam is 8509 kip-in in 

both directions which corresponds with a tip load of 109.1 kips.  However, the maximum 

loads obtained during the tests were 129.6 kips in the positive direction and 132.4 kips in 

the negative direction.  This difference, of approximately 20%, can be attributed to the strain 

hardening of the reinforcing steel. 
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Figure 4.22 - Experimental Response (adapted from 4-19) 

 The load-displacement response of the beam was simulated using the program 

IDARC2D.  The computed response obtained assuming default values for the hysteretic 

parameters is shown in Figure 4.23.  The strain-hardening modulus used for the reinforcing 

bars was approximately 3.0% of the elastic modulus. 

 In this case, the overall shape of the hysteretic loops is reasonably accurate, both in 

terms of stiffness and strength.  However, the initial stiffness computed by IDARC2D is 

significantly larger than the experimental stiffness.  And, the strength in the positive 

direction is over-estimated by approximately 20%. 
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Figure 4.23 - IDARC2D Prediction (Before Adjusting Hysteretic Parameters) Compared 
with Measured Response 
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Figure 4.24 - IDARC2D Prediction (After Adjusting Hysteretic Parameters) Compared with 
Measured Response 

 In order to improve the simulation of the stiffness degradation, the parameter HC 

was set to 1.5.  Likewise, to model the pinching of the hysteretic loops, the parameter HS 

was adjusted to 0.4.  The computed response of the modified IDARC2D model, shown in 
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Figure 4.24, is slightly closer to the experimental response than that obtained by the original 

model. 

 Figure 4.25 shows the load-displacement response as predicted by program 

DRAIN-2DX.  As in Section 4.3.1, the response computed using this program is far from 

the actual behavior in terms of the loading and unloading stiffnesses.  However, the strength 

levels are very closely estimated in both directions, except at the largest displacement in the 

negative direction where the load reaches again approximately 150 kips. 
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Figure 4.25 - DRAIN-2DX Prediction Compared with Measured Response 

 The load-displacement response computed by program FIBERC is shown in Figure 

4.26.  An average post-yield stiffness of 2% of the elastic modulus was chosen for the 

reinforcing bars in this model. 

 The initial stiffness as well as the unloading stiffnesses for subsequent cycles are 

clearly overestimated.  Strength in the positive direction is also overestimated significantly 

(approximately 30%) while in the negative direction, it is relatively closely predicted 

(within approximately 10%).  No pinching effect is reproduced, as is expected from a 

regular fiber-element idealization.  Consequently, the predicted hysteretic energy dissipation 

is much larger than the actual energy dissipation. 
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Figure 4.26 - FIBERC Prediction Compared with Measured Response 

4.4  Quasi-Static Response of Two-Story Frame (4-10, 4-21) 

4.4.1  Description of Structure and Test Procedure 

 The test structure consisted of a large-scale single span, two-story plane frame built 

integrally with a massive, heavily-reinforced foundation beam.  It was cast horizontally and 

then lifted to its final vertical position after a 14-day curing period.  The base beam was then 

post-tensioned to the laboratory strong floor, virtually fixing the column bases and 

preventing lateral sliding of the system.  The detailed geometry of the frame is shown in 

Figure 4.27 (all dimensions in this figure are in millimeters). 

 All members had a rectangular cross section of 300 mm by 400 mm, reinforced 

longitudinally with No. 20 bars and transversely with No. 10 bars spaced 125 mm center to 

center.  Typical cross sections for beams and columns are shown in Figure 4.28 (all 

dimensions in this figure are in millimeters). 

 Both concrete and reinforcement samples were tested on the first day of testing.  

Concrete compression tests were performed on standard cylinders using a stiff machine in 

stroke-control mode.  A concrete compressive strength of 30 MPa was found.  For the main 
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reinforcing bars, a yield stress of 418 MPa and a modulus of elasticity of 192,500 MPa were 

obtained.  The average strain-hardening modulus was 3100 MPa, and the onset of strain 

hardening occurred at approximately 0.009 in/in.  For the transverse reinforcement, a yield 

strength of 454 MPa and an ultimate strength of 340 MPa were measured. 
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Figure 4.27 - Schematic of Experimental Set-up (adapted from 4-10) 

 Loading consisted of 700-kN constant axial loads on the columns and a quasi-static 

lateral load controlled by the horizontal displacement of the top-level beam.  

Instrumentation of the specimen consisted of displacement transducers for lateral 

deflections, demountable gages for surface strains, strain gages for reinforcing bar 

deformations and load cells for measuring the load applied by actuators. 

 The first part of the series of tests was initiated with the application of axial loads 

on the columns (force-controlled mode).  Then, the frame was subjected to a series of 
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repeated monotonic loadings with increasing maximum lateral displacements until the 

lateral capacity of the frame was reached.  Details of this series are given in Section 4.4.2. 

 During the second part of the test series, reversed cyclic loads were applied to the 

frame.  This was done in three stages, with several cycles and increasing maximum 

displacements for each stage.  A complete description of this series of tests and their results 

are presented in Section 4.4.4. 
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Figure 4.28 - Beam and Column Geometry and Reinforcement (adapted from 4-10) 

4.4.2  Repeated Loading Test Results 

 The load-displacement response of the frame, in terms of applied load, Q (equal to 

the base shear), versus the horizontal displacement of the top beam, is shown in Figure 4.29.  

A similar plot is shown in Figure 4.30 comparing the load-displacement responses at the 

first (solid line) and second (dashed line) levels. 
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Figure 4.29 - Experimental Response at top beam (adapted from 4-10) 
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Figure 4.30 - Experimental Response at first- and second-floor beams (adapted from 4-10) 

 The initial experimental stiffness of the frame was approximately 20 kN/mm.  First 

cracking was reached in the first-story beam at approximately 50 kN, causing the first 

noticeable reduction in stiffness to approximately 15 kN/mm.  At a load of 145 kN flexural 
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cracking at the column base occurred together with web shear cracks in the first-story beam, 

further reducing the stiffness to approximately 8 kN/mm. 

 First yielding of reinforcement in the first-story beam occurred at approximately 

260 kN leading to a noticeable reduction in the lateral stiffness of the frame to 

approximately 5 kN/mm.  As the load approached 323 kN yielding of all column-base 

reinforcement and concrete spalling occurred, effectively generating plastic hinges.  At a 

slightly larger load (329 kN) hinging developed at the ends of the top-story beam.  After this 

stage stiffness reduced to zero but strength was maintained for large deformations (an 

overall displacement ductility of approximately 5 was measured). 

 The ultimate lateral load was approximately 330 kN and was reached at a drift ratio 

of 2.0% (approximately 80 mm).  The collapse mechanism involved hinges at the ends of 

the beams and at the base of first-story columns.  Although response was mainly in flexure, 

shear cracks developed in beams and columns. 

 Figure 4.29 shows clearly the degradation in unloading and reloading stiffness with 

increasing deformations and number of cycles.  For the initial cycles both the unloading and 

reloading stiffnesses were between 11 kN/mm and 15 kN/mm.  For the large-deflection 

cycles, the unloading stiffness was initially approximately 8 kN/mm reducing to 5 kN/mm 

while the reloading stiffness was approximately 7 kN/mm. 

4.4.3  Analytical Predictions of the Repeated Loading Experimental Response 

 First, program IDARC2D was used to simulate the response of the frame.  The load-

displacement response for this case is shown in Figure 4.31, for which the model assumed 

default values for the hysteretic parameters.  The initial stiffness predicted by IDARC2D is 

very close to the experimental stiffness (20 kN/mm).  However, this stiffness is maintained 

for high levels of load (up to approximately 150 kN) while the actual stiffness dropped 

approximately 25% at 50 kN.  First yielding in the first-floor beam was detected by 

IDARC2D at approximately 250 kN, which was in close agreement with the experimental 

occurrence. 
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 At a drift ratio of 2.0% (approximately 80 mm), the predicted lateral strength is 

approximately 310 kN, that is, approximately 7% less than the actual strength of the frame.  

However, the predicted strength of the structure grows with increasing deflection, and at 

approximately a drift ratio of 3.6% (approximately 150 mm), it reaches a load of 330 kN. 

 The predicted unloading and reloading stiffnesses are generally in good agreement 

with the experimental results.  In particular, the degradation of stiffness with increasing 

deformations and number of cycles is reproduced well, although slightly underestimated. 

 In an attempt to match the unloading and reloading stiffness a new IDARC2D 

model was created using a modified set of hysteretic parameters.  The parameter values used 

for the new simulation were HC=3.5 and HBE=HS=0.  Figure 4.32 shows the computed 

response for this model.  The stiffnesses for the initial cycles are slightly overestimated 

while the stiffness of final unloading branch is very close to the experimentally observed 

stiffness. 
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Figure 4.31 - IDARC2D Prediction (Before Adjusting Hysteretic Parameters) Compared 
with Measured Response 
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Figure 4.32 - IDARC2D Prediction (After Adjusting Hysteretic Parameters) Compared with 
Measured Response 

 The IDARC2D model develops plastic hinges in the base of the columns and at the 

ends of beams.  The first-story column top ends are predicted to remain elastic during the 

response, while both ends of the second-story columns are predicted to crack.  These results 

are in general agreement with the experimental observations discussed in Section 4.4.2. 

 Figure 4.33 shows the load-displacement response computed using the DRAIN-

2DX program.  The predicted initial stiffness is approximately 10 kN/mm, which is 

approximately half of the experimental initial stiffness.  This stiffness is maintained for all 

unloading and reloading branches of subsequent cycles. 

 The predicted yielding of the structure takes place at only 210 kN, while in reality it 

occurred at approximately 260 kN.  Furthermore, the estimated strength at 2.0% drift ratio 

(approximately 80 mm) barely reached 260 kN which corresponds to less that 80% of the 

actual strength at that displacement.  Finally, the maximum base shear predicted by this 

model was slightly over 270 kN (82% of the experimental strength) at a drift ratio of 3.6% 

(150 mm). 

 The poor performance of this model is due mainly to the absence of interaction 

between axial loads and bending moments.  Also, the elasto-plastic nature of the hysteretic 
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element response does not permit a realistic representation of the unloading and reloading 

stiffness degradation. 
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Figure 4.33 - DRAIN-2DX Prediction Compared with Measured Response 

 Finally, it is worth mentioning that the model predicts plastic hinges not only at the 

column bases and beam ends, but also at the column top ends.  This again may be a 

consequence of the lack of axial load and moment interaction. 

 Figure 4.34 presents the load-displacement response computed with program 

FIBERC.  The predicted initial stiffness of the structure is slightly lower that the 

experimental result.  However, the program simulates closely the gradual reduction in 

stiffness as the applied load increases.  First yield is estimated at a lateral load of 

approximately 240 kN (8% lower than the actual yield load).  The predicted lateral capacity 

of the frame was nearly 310 kN (approximately 95% of the experimental strength) and was 

reached at a drift ratio of approximately 2.0% (80 mm).  For larger deflections and 

subsequent cycles, the estimated capacity of the frame is maintained approximately constant 

up to a drift ratio of 3.6% (approximately 150 mm).  The predicted unloading and reloading 

stiffnesses for late cycles are close to the experimentally obtained stiffnesses. 
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Figure 4.34 - FIBERC Prediction Compared with Measured Response 

 The FIBERC model exhibits significant yielding at the column bases and beam ends.  

The computed response at the top of the first-story and bottom of second-story columns is 

basically elastic, while at the top of the second-story column shows cracking and some 

yielding.  In general, this prediction coincides with the experimental response described in 

Section 4.4.2. 

4.4.4  Reversed Cyclic Loading Test Results 

 A second series of tests were conducted on the damaged structure, immediately after 

the repeated loading series, to evaluate its response to reversed-cyclic loads.  Initially, the 

specimen was pulled back to a top lateral displacement of approximately 50 mm.  Then, a 

sequence of five displacement-controlled loading cycles was applied, with a maximum 

displacement of 25 mm.  The second stage of the reversed-cyclic load series involved 

excursions of 55 mm of top floor lateral displacement, and the last sequence of cycles was 

applied with excursions of 65 mm of top floor lateral displacement.  Figure 4.35 compares 

the typical load-displacement responses for all three levels of cyclic load displacements.  

The figure illustrates the reduction in stiffness that occurred with increasing displacement 

amplitude and number of cycles. 
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 Observations after the series of tests (4-10) indicated that widespread crushing of 

concrete at the top and bottom of all beam ends had occurred.  Likewise, extensive spalling 

of concrete at the bottom of the columns was observed.  Additionally, diagonal concrete 

crushing in the first-story beam was detected.  Finally, large permanent rotations at the ends 

of the beams were observed. 
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Figure 4.35 - Experimental Response (adapted from 4-10) 

4.4.5  Analytical Prediction of Reversed Cyclic Loading Results 

 Using the programs IDARC2D, DRAIN-2DX and FIBERC, the analytical model of 

the damaged frame was subjected to the history of displacements corresponding with the 

repeated-load history before the frame was subjected to the history of cyclic displacements. 

 Figure 4.36 displays the computed cyclic response of the frame using the program 

IDARC2D compared to the experimental response (shown with a dashed line).  In general, 

the program does not reproduce accurately the measured behavior in terms of either strength 

or stiffness, even though the hysteretic parameters were readjusted repeatedly to try to 

match the experimental response.  The difference in predicted and actual strength at 

maximum displacement in the negative direction is more than 40%.  On the other hand, the 

unloading stiffness from the positive side, is not too different from the experimentally 
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observed stiffness.  However, the unloading stiffness from the negative excursions is 

generally far too stiff.  Furthermore, pinching of the hysteretic loops is not reproduced. 
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Figure 4.36 - IDARC2D Prediction of Cyclic Response (typical loops) 

 An explanation for the poor prediction provided by IDARC2D for the cyclic-

loading case can be inferred from Figure 4.37, in which both the repeated and reversed 

loading cycles are included.  It is clear from Figure 4.37 that the unloading stiffness in the 

positive direction estimated by the program IDARC2D indicates a significant degradation 

while the unloading stiffness for the opposite direction is very close to the elastic stiffness.  

In contrast, the experimental response shows similar degradation in unloading stiffness 

regardless of the direction of the reversed load.  It is concluded then, that the IDARC2D 

model is unable to effectively predict the hysteretic response of the frame when the 

deformation history is not symmetric with respect to the zero-deflection axis. 

 The hysteretic response computed by the program DRAIN-2DX is shown in Figure 

4.38.  As expected, the response computed by this program is essentially elasto-plastic and 

therefore, the response is grossly misrepresented in terms of stiffness and energy dissipation 

(as measured by the area inside the hysteretic loops).  The levels of force at maximum 

displacement for the large-deflection cycles, however, are closely matched by the model. 
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Figure 4.37 - IDARC2D Prediction of Complete Cyclic Response 
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Figure 4.38 - DRAIN-2DX Prediction of Cyclic Response (typical loops) 

 Shown in Figure 4.39 is the hysteretic response of the frame computed by the 

program FIBERC together with the experimental response.  For this case, the strength level 

and unloading stiffnesses are generally well predicted for all stages of maximum deflection.  

However, because of the nature of the model, the pinching of the loops (due mainly to shear 
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deformation and anchorage slip) is not reproduced and therefore, the energy dissipation of 

the structure is significantly overestimated. 
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Figure 4.39 - FIBERC Prediction of Cyclic Response (typical loops) 

4.5  Pseudo-Dynamic Response of Four-Story Building (4-12, 4-14) 

 A full-scale four-story reinforced concrete building was tested under simulated 

seismic loads at the European Laboratory for Structural Assessment (ELSA) of the Joint 

Research Center (JRC) of the European Commission as part of a comprehensive testing 

program “to contribute to the advancement of safety evaluation of structures subjected to 

seismic action by developing damage indicators and failure criteria for plastic hinge regions 

(4-14).”  That program consisted of several phases of analytical and experimental efforts 

leading to the pseudo-dynamic test of the building. 

 Details of the structure and the base motion used to test the structure are presented 

in Section 4.5.1, while a brief description of the pseudo-dynamic approach is given in 

Section 4.5.2. 

 The overall experimental results are then described in Section 4.5.3.  These results 

however, are based on preliminary reports (4-12, 4-14) and therefore, lack some aspects of 

the response that would be of interest for the present study.  Nonetheless, a complete 
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analysis of the results together with responses computed using the programs IDARC2D, 

DRAIN-2DX and FIBERC are presented in Section 4.5.4. 
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Figure 4.40 - Elevation of Building (Adapted from 4-14) 

4.5.1  Description of Building and Testing Procedure 

 The test structure was a four-story frame system supported by a grid of deep 

foundation beams that were in turn attached to the strong floor of the laboratory.  As shown 

in elevation in Figure 4.40, the interstory heights were 3.50 m for the first floor and 3.0 m 

for the other floors, for a total height of 12.5 m from the base of the columns to the roof.  

All dimensions in Figure 4.40 are in millimeters. 
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 The plan of the building was square with 10.0 m sides from center to center of 

exterior columns.  As shown in Figure 4.41, the building was symmetric in the direction of 

testing having two 5.0 m spans.  In the transverse direction the building was asymmetric 

with spans of 6.0 m and 4.0 m.  This created a more realistic layout and provided the 

possibility of evaluating the effect of plan irregularity in the building response if eventually 

tested in the transverse direction. 
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Figure 4.41 - Elevation of Building (Adapted from 4-14) 

 All exterior columns were square with 400 mm sides, and the single interior 

column, which is also square, had 450 mm sides.  Beams in all floors were rectangular with 

a depth of 450 mm and a width of 300 mm.  All beams were cast integrally with a solid 150 

mm thick slab, and therefore they all behaved as T beams.  Figure 4.42 shows a typical 

beam and slab cross section while Figure 4.43 displays typical cross sections for the interior 

and exterior columns. 
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Figure 4.42 - Typical Cross Section of Beam and Slab (Adapted from 4-14) 

 All structural elements used normal-weight high-strength concrete.  The average 

compressive strengths for all floors, shown in Table 4.1, were obtained using standard cube 

specimens.  The reinforcing bars and welded meshes used for all beams, columns and slabs 

were grade 500 Tempcore.  According to References 4-17 and 4-18, this steel has a nominal 

strain at failure of less than 12% and a low tensile failure strength-to-yield strength ratio 

(approximately 1.16). 

 Table 4.2 summarizes the main properties of the bars used.  An average yield 

strength of 560 MPa was adopted for the analysis. 
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Figure 4.43 - Typical Cross Section of Exterior and Interior Columns (Adapted from 4-14) 

Table 4.1 - Compressive Concrete Strength, MPa (Adapted from 4-14) 
FLOOR COLUMNS SLABS 

1st 49.8 56.4 
2nd 47.6 53.2 
3rd 32.0 47.2 
4th 46.3 42.1 
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Table 4.2 - Reinforcing bar Tensile Properties (Adapted from 4-14) 
Diameter 

(mm) 
Area 

(mm2) 
fy 

(MPa) 
fu 

(MPa) 

6 29.2 566.1 633.5 
8 51.4 572.5 636.1 

10 80.3 545.5 618.8 
12 113.1 589.7 689.4 
14 153.3 583.2 667.4 
16 199.2 595.7 681.0 
20 310.0 553.5 660.0 
26 517.2 555.6 657.3 
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Figure 4.44 - Ground Acceleration Record (Adapted from 4-14) 

 The ground motion acceleration imposed on the test building during the pseudo-

dynamic test was artificially generated using the wave forms from the actual 1976 Friuli 

Earthquake.  Figure 4.44 shows the record of the ground motion acceleration that was 

digitized from Reference 4-14. 
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Figure 4.45 - Digitized Elastic Response Spectrum (Adapted from 4-14) 
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Figure 4.46 - Computed vs. Digitized Elastic Response Spectra 

 Figure 4.45 displays the elastic acceleration response spectrum corresponding to the 

ground acceleration record used for the test (Figure 4.34) and 5% damping.  This spectrum 

was also digitized from Reference 4-14. 
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 Figure 4.46 illustrates the difference between the elastic response spectrum from the 

digitized ground motion acceleration record (solid line) and that digitized from the original 

research report (4-14).  Differences in spectral accelerations of up to 30% are obtained for 

certain period ranges. 

4.5.2  Discussion of the Pseudo-Dynamic Test Method  (4-7) 

 A pseudo-dynamic test is actually a quasi-static test during which on-line computer 

calculations use experimental measurements of the actual properties and nonlinear response 

of the structure as input to provide realistic simulation of the dynamic response.  The 

equations of motion for a discrete parameter model of the test structure are solved on-line 

using a step-by-step numerical integration method assuming certain inertial and viscous 

damping forces (modeled analytically).  The nonlinear structural restoring forces are 

measured experimentally, accounting automatically for the hysteretic damping due to 

inelastic deformation and damage of the members. 

 A record of ground acceleration history is given as input data to the algorithm 

which then calculates the story lateral displacements for a small time step. These 

displacements are then applied to the structure by servo-controlled hydraulic actuators 

attached to a reaction wall or frame. Load-cells on the actuators measure the forces 

necessary to achieve the required deformation (the structural restoring forces) and these are 

then used in the next step of the calculation.  Because the inertia and damping forces are 

analytically modeled, there is no need to perform the test in real time. 

 One of the major advantages of this method is the possibility to test very large 

models using a limited hydraulic power requirement, as opposed to shaking-table tests that 

are restricted to components or small-scale models of large structures. The second major 

advantage is the possibility to monitor very closely the progression of damage in the 

structure and to stop at any moment for a detailed examination or to prevent complete 

collapse.  However, shaking-table tests are needed when testing materials that have 

properties which are rate-dependent or when structures with fully distributed mass are 

investigated experimentally. 
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4.5.3  Experimental Results 

 A ‘low-level’ test was conducted before the actual test as a verification of the initial 

stiffness properties of the building, and as a rehearsal of the more demanding high-level test.  

The progression of cracking was evident, but apparently no yielding occurred.  Inspection of 

the structure following the test revealed no new cracks other than the micro-cracking due to 

shrinkage which had been mapped prior to the test. 
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Figure 4.47 - Roof Displacement Time History (Adapted from 4-14) 

 The ‘high-level’ test was then performed.  Apparently, very limited damage was 

sustained by the building during the high-level test.  At the ends of the beams and columns 

in the first three stories cracks opened and subsequently closed.  Only cracks at the interface 

between beams and columns remained open permanently and are evidence of local yielding 

of reinforcing bars.  No spalling of concrete cover was observed.  Likewise, no local 

buckling of reinforcing bars was detected.  Figure 4.47 shows the displacement response at 

the roof, and Figure 4.48 displays the base-shear history. 

 Immediately following the high-level test, stiffness of the structure was measured.  

A fundamental period of 1.22 sec was measured, which was more than two times that of the 

virgin structure (0.56 sec).  This indicated a change of stiffness beyond the "progression of 
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cracking".  However, the mode shapes measured were close to those of the virgin structure, 

which suggests that the structure was uniformly damaged (corresponding to an efficient 

energy-dissipating mechanism). The pattern of maximum rotations in the members appeared 

to correspond to a weak beam-strong column mechanism (limited to the first three stories). 
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Figure 4.48 - Base Shear Time History (Adapted from 4-14) 

 Contribution of higher-mode forces was reported by the researchers (4-14) based on 

the time-history response of the individual story shears.  The first two stories exhibited large 

energy dissipation, with large hysteretic loops, but some pinching.  The third floor 

contributed little to the energy dissipation, and the fourth floor contribution was almost 

negligible (the amount of energy dissipated by the top level was an order of magnitude 

smaller than the energy dissipated by each of the other stories).  The interstory drift at the 

second level was larger that at the first level.  Figure 4.49 shows the load-displacement 

response of the structure, in terms of base shear versus roof displacement. 
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Figure 4.49 - Load-Displacement Response for High-Level Test (Adapted from 4-14) 

 One of the major unknowns about the complete behavior of an actual structure is 

the contribution of floor slabs to the lateral stiffness and strength of the building.  For this 

structure, the participation appeared to be the same for the internal and external transverse 

frames for negative moments (tension on top).  However, the effective width was greater for 

the internal transverse frame for positive moments (slab in compression). 

 The contributing slab width was estimated (4-14) assuming that axial deformations 

were due to membrane action of the slab only (neglecting independent bending of the slab) 

by summing up the portions of slab corresponding to each measurement location, multiplied 

by the ratio of the axial deformation to the axial deformation at the beam axis.  It was also 

assumed that limited torsional resistance was provided by orthogonal beams (large torsion 

cracks occurred during the test). 

4.5.4  Analytical Predictions of the Experimental Response 

 All analytical predictions of the seismic response of the structure presented in this 

section were performed using the interior frame only.  Mass corresponding with 38.7% of 

the building mass was assigned to this frame, based on a three-dimensional elastic static 

analysis performed with the educational version of the program ETABS (4-23).  
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Furthermore, a constant effective slab width of 2.0 m was used based on the experimental 

results mentioned in Section 4.5.3. 

 Figure 4.50 shows the elastic time-history prediction of the roof displacement 

response for the high-level test.  This response was obtained using the program SAP2000 

(4-6) and assuming gross section properties for all elements.  Lengthening of the vibration 

period and magnification of lateral displacement in the test structure are clear from 

comparisons of the measured response with the computed elastic response in this figure. 
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Figure 4.50 - Computed Elastic Time-History Response of Roof Displacement 

 The program IDARC2D was used then to predict the inelastic dynamic response of 

the building.  Figure 4.51 shows the time-history response for the high-level ground motion.  

The overall shape of the displacement time history is somewhat similar to that obtained 

experimentally.  In particular, a good prediction of the vibration period was achieved.  

However, the lateral deflection levels after approximately 4 seconds of response were only 

approximately one third of the measured response:  While the program predicted the 

response to attenuate gradually, the measured displacements remained large throughout the 

eight seconds of analysis. 
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Figure 4.51 - IDARC2D Computed Roof Displacement Time History 
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Figure 4.52 - Computed Load-Displacement Response using IDARC2D 

 The computed load-displacement response obtained using program IDARC2D is 

displayed in Figure 4.52.  Comparing this figure to Figure 4.48, it is evident that IDARC2D 

generally predicted a stiffer response than that which was measured.  Moreover, the base 

shear levels were significantly under-predicted (by approximately 28%). 
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Figure 4.53 - DRAIN-2DX Computed Roof Displacement Time History 

 Figure 4.53 shows the roof displacement time-history response computed using 

program DRAIN-2DX.  A fair simulation of the experimental response was obtained for the 

initial four seconds, although the magnitude of the predicted displacements was appreciably 

lower (by approximately 40% to 50%) than the experimentally observed response.  For the 

latter four seconds of the record, the predicted displacements were much smaller 

(approximately one-third) than those measured experimentally.  Also, the computed 

vibration period of the structure did not lengthen due to the lack of stiffness degradation in 

the model. 

 As shown in Figure 4.54, the program DRAIN-2DX significantly under-estimated 

the level of base shear developed in the building, reaching approximately half the force 

measured experimentally.  This difference can be accounted for partially by the lack of axial 

force-bending moment interaction in the columns (which reduces column capacities). 

 The main effect of the deficiencies in base shear and deflections noted above is that 

there is an under-estimation of energy dissipation and damage in the structure. 
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Figure 4.54 - Base Shear-Displacement Response Computed using DRAIN-2DX 

 The roof displacement time history computed by program FIBERC for the ground 

motion is shown in Figure 4.55.  A reasonably close correlation with the experimental 

results for both displacements and vibration period was achieved through approximately 4 

seconds.  After that, the measured peak displacements were again significantly larger than 

the computed values.  Furthermore, the model failed to predict the lengthening of the 

response period observed during the test. 

 The load-displacement response of the structure computed using program FIBERC is 

displayed in Figure 4.56.  A good comparison with the experimental response was attained, 

in particular for stiffness of the initial cycles.  For the large hysteretic loops, the measured 

behavior shows reduced stiffness and large displacements while the response computed 

using FIBERC maintains a relatively constant average stiffness.  Finally, maximum base 

shear levels computed with the program exhibited good correlation with those observed 

experimentally and the maximum displacements are only slightly smaller than the measured 

values. 
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Figure 4.55 - FIBERC Computed Roof Displacement Time History 
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Figure 4.56 - Base Shear-Roof Displacement Response Computed using FIBERC 

 The roof-displacement computed response of the structure provided by all three 

programs, in particular for the late stages, is in general poor.  However, the three responses 

(shown in Figures 4.51, 4.53, and 4.55) are somewhat similar to each other, especially when 

they all predict a reduction in displacement for the last four seconds. 
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 This fact, together with potential differences in mass, damping and ground motion 

of the pseudo-dynamic model compared with those assumed for the computer models used 

in this study, suggest that a dynamic analysis may not be appropriate for comparing 

measured and computed responses in this case.  Therefore, it was decided to reanalyze the 

structure applying displacement-controlled quasi-static loads at the floor levels in a manner 

similar to that used to apply actual loads during the test.  The results of such analysis are 

presented below. 

 Figure 4.57 shows the computed time history of the base shear together with the 

experimental response.  A reasonably good correlation was obtained up to approximately 

3.5 seconds.  After that, the difference between computed and measured responses increases 

significantly.  However, the overall shape of the predicted response is still quite similar to 

that of the experimental response. 
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Figure 4.57 - Quasi-Static Computed Base Shear Time History using FIBERC Compared 

with Measured Response 

 The computed base shear-roof displacement response is presented in Figure 4.58.  

Comparing this prediction with the experimental response (Figure 4.49) and the dynamic 

computed response (Figure 4.56) it is evident that the quasi-static analysis provides a better 
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simulation of the structure’s behavior than the dynamic analysis.  Not only is the shape of 

the hysteresis loops more similar to that observed experimentally, but the average secant 

stiffness is also closer. 
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Figure 4.58 - Quasi-Static Computed Base Shear-Roof Displacement Response using 

FIBERC 

4.6  Summary of Prediction Results 

 A series of reinforced concrete members and frames that were tested by several 

researchers around the world were reviewed and analyzed.  Two widely-used computer 

programs for nonlinear dynamic analysis of structures, namely DRAIN-2DX and 

IDARC2D, were evaluated using the experimental data.  Additionally, the program FIBERC, 

developed as part of the research study presented in this report, was also evaluated. 

 In general, the program IDARC2D provided a good prediction of the experimental 

results at all levels of idealization considered; that is, at the section level, as well as globally 

for members and frames, when the program’s hysteresis parameters are properly adjusted.  

In particular, good simulation of strength deterioration, stiffness degradation, and pinching 

of hysteresis loops was achieved by adjusting a set of parameters that control the program’s 

built-in hysteretic model.  This feature however, may be difficult to use or lead to incorrect 
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and unconservative results in practical applications for which no guidance exists (such as 

test data) for selection of appropriate values of the hysteresis parameters. 

 One of the main shortcomings of the model implemented in program IDARC2D is 

the lack of moment-axial load interaction during the analysis.  Additionally, the initial 

stiffness estimated by the program is usually higher than the actual stiffness. 

 An additional deficiency in the performance of IDARC2D was found during the 

analysis of a frame for which the quasi-static lateral load was applied initially in only one 

direction in a repeated fashion and then applied cyclically in both directions.  For this case 

the program was unable to reproduce well the cyclic behavior of the frame in spite of 

producing an accurate prediction of the repeated load cycles.  It was concluded that the 

model does not properly model cases in which the load is asymmetrically applied. 

 The beam-column element of program DRAIN-2DX, which was also used in this 

study to compute the response of reinforced concrete members and frames to seismic loads, 

is elasto-plastic bilinear with no strength or stiffness degradation, and therefore does not 

reproduce the actual hysteretic behavior of the members.  However, it was found that the 

overall response of the two frames studied here was relatively well-predicted. 

 It is concluded that the program DRAIN-2DX is not an appropriate tool for the 

investigation of reinforced-concrete member hysteretic response.  Particularly, it 

misrepresents the energy dissipation and damage in elements.  However, based on the two 

frame studies performed here, it may be useful for estimating the peak inelastic response of 

reinforced-concrete frames. 

 The program FIBERC provides, in general, reasonably good prediction of the 

measured response of sections, members and frames, especially when flexural behavior 

dominates the response of the structure.  It also accounts for the interaction of axial force 

and bending moment during analysis.  However, the effects of pinching and stiffness 

deterioration are sometimes under-estimated (because the model ignores them). 

 During the investigation of the pseudo-dynamic test of a four-story building, it was 

found that a dynamic analysis provided poor predictions with all models, and it was 
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concluded that uncertainties associated with mass, stiffness and damping may make 

dynamic analysis inappropriate.  When a quasi-static analysis was used, the computed 

response was reasonably close to the measured response in terms of the base-shear time 

history and the base shear-roof displacement relationship. 

 To try to remedy the deficiencies in program FIBERC mentioned above, an 

extension of the model to include the effects of shear deformations in the members and 

anchorage slip of reinforcing bars is developed in Chapters 5 and 6, respectively. 
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CHAPTER 5 

Member Shear Deformations Modeling 

5.1  General Remarks 

 The analytical modeling of shear deformations in reinforced concrete members after 

initial cracking has been studied for the last two or three decades.  A number of approximate 

solutions have been developed recently.  In Section 5.2, a review of some of these 

approaches is presented. 

 Section 5.3 introduces a number of modifications to program FIBERC to take into 

account the effect of shear deformations in the static and dynamic response of reinforced 

concrete members and frames.  Section 5.4 presents a series of analyses using the modified 

version of FIBERC to assess the performance of the model. 

5.2  Previous Research on Concrete Shear Deformations 

 A semi-empirical approach was developed by Park, Ang and Wen (5-5) as part of a 

study on damage analysis of reinforced concrete buildings.  In reference to the cantilever 

beam shown in Figure 5.1, the shear crack inclination is taken as 45 and the deflection due 

to shear cracking is computed as 

 s i sL          (5.1) 

where s is the shear rotation (angle of open cracks) which is a function of the shear span 

ratio, the average bond stress in the bars, and the ratio of transverse reinforcement. 

 Based on the above formulation, Park, Reinhorn and Kunnath (5-6) obtained the 

equivalent curvature given by Equation 5.2 
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in which L is the shear span, Ls is the length of the beam without shear cracks, and z is the 

distance between the tension and compression reinforcement. 

Shear Cracking Zone No Shear
Cracking Zone

z

L

L'

L i

45o

s
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Figure 5.1 - Park’s Shear Crack and Shear Deflection Model (adapted from 5-5) 

 Using a fiber element approach, Powell et al. (5-8) suggested a conceptual model in 

which the element is divided along its length into slices that contain shear reinforcement as 

transverse fibers, as shown in Figure 5.2c.   

 This model disregards the conventional shear distortion (displayed in Figure 5.2d) 

but accounts for diagonal cracking.  Figure 5.2d shows how such diagonal cracking would 

cause shear deformations in the slice.  That figure, however, assumes perfect aggregate 

interlock and ignores the sliding that would occur along cracks. 

 Powell et al. propose “adding cracking degrees of freedom to the slice” so that 

cracking, stirrup strains and even interaction between shear force, axial force and moments 

can be accounted for.  However, the authors do not explicitly develop a theoretical model to 

implement this conceptual idealization. 
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Figure 5.2 - Conceptual Inelastic Shear Model by Powell et al. (adapted from 5-8) 

 Several more involved models have been developed by other researchers.  The 

following subsections present an overview of three of those models, some of which will be 

used in program FIBERC as discussed in Section 5.3. 

5.2.1  Analogous Truss Model for Shear Distortions in Cracked Members 

 A truss analogy was presented by Park and Paulay (5-7) for reinforced concrete 

members under shear.  Figure 5.3 shows a portion of a beam with top and bottom 

reinforcement separated by a distance d from each other, with vertical stirrups at a spacing s 

and cracks inclined at an angle .  The model assumes that the transverse steel is lumped at 

discrete locations along the beam with a separation dcot and that a compression strut 

exists within that length, thus forming a panel of the analogous truss. 
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Figure 5.3 - Idealization of Crack inclination for an Analogous Truss (adapted from 5-7) 

 In Figure 5.4 the distortion of one panel is displayed.  It is assumed that the top and 

bottom reinforcing bars (chords of the truss) are uniaxially rigid.  Therefore, the total 

deflection of the panel is 

   

v s R s

c   
sin

     (5.3) 

Vs

Vs

s

 c

R

Av
Av

A c

v

 

Figure 5.4 - Shear Distortion of Analogous Truss (adapted from 5-7) 

 

 Assuming linear elastic response of the stirrups in tension and the concrete in 

compression, Equation 5.3 can be rewritten as 
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or, introducing the shear force Vs, the stirrup spacing s, the stirrup transverse area Av, and 

the web width bw, it becomes 
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where, n is the modular ratio given by 

n
E

E
S

C

          (5.6) 

Finally, the shear strain can be obtained as 
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or in a slightly simpler form as 
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where the transverse steel ratio v and the shear area As are given by Equation 5.9 and 5.10, 

respectively. 

v
v

w

A

b s
          (5.9) 

A b ds w          (5.10) 

5.2.2  Modified Compression Field Theory 

 Collins and his associates at the University of Toronto developed the so-called 

“Modified Compression Field Theory” (5-2, 5-9).  This theory, which was originally 

applied to concrete membrane elements and subsequently to reinforced concrete beams (5-

10), is based on the average strains in the cracked member as shown in Figure 5.5.. 
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Figure 5.5 - Average Shear Strains In Cracked Element (adapted from 5-9) 

 One of the main assumptions of the method is that  the angle of inclination of the 

diagonal cracks coincides with the angle of inclination of the principal strain and stresses.  

Consequently, the following compatibility condition is written 
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     (5.10) 

 Furthermore, the shear strain is related to strain components and to the angle  by 

Equation 5.11 which is derived from Mohr’s circle (Figure 5.6). 


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
2 2x

tan
        (5.11) 

 Likewise, relationships among the stress components acting in the member can be 

derived.  Equation 5.12 relates the principal compressive stress fc2 to the shear stress  and 

to the principal tensile stress fc1.  Similarly, Equations 5.13 and 5.14 relate the stresses in the 

x and y directions to the principal and shear stresses. 
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Figure 5.6 - Mohr’s Circle for Average Strains (adapted from 5-9) 
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  (5.14) 

 Using equilibrium considerations, the force in the stirrups (with a transverse area Av 

and spacing s) can be estimated using Equation 5.15.  Then, equating  to the average shear 

stress, that is,   V
b jdw

, an expression for the shear strength of the member is obtained 

(Equation 5.16). 

 A f f f b sv v c c w 2
2

1
2sin cos      (5.15) 

V f b jd
A f

s
jdw

v v 1 cot cot      (5.16) 

 Finally, the stress-strain relations for concrete in compression and tension are given 

by Equations 5.17 and 5.18, respectively 
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 The solution to this set of equations is iterative.  It starts by assuming the angle  

and two of the strains, then it iterates until convergence is achieved. 

 A similar development was conducted by Hsu and his associates at the University of 

Houston (5-3).  They introduced the so-called “softened truss model” to evaluate the shear 

deformations in membrane elements. 

5.2.3  Cyclic Inelastic Strut-and-Tie Model 

 A recent study by Chang and Mander (5-1) used a strut-and-tie model approach.  In 

this study a single bridge pier was analyzed for the combined action of axial loads, bending 

moments and shear forces applied cyclically. 


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Figure 5.7 - Crack Inclination of Element Subjected to Shear (adapted from 5-1) 

 Figure 5.7 shows a segment of the element subjected to shear forces and displaying 

diagonal cracks with an angle of inclination of .  This angle was assumed constant during 

the analysis (after cracking).  This assumption was based on experimental observations (5-
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1).  Additionally, the model assumed that the stirrups are lumped at discrete locations 

separated a distance jdcot, as shown in Figure 5.8. 


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Figure 5.8 - Strut-and-Tie Model (adapted from 5-1) 

The strut-and-tie model for the element is shown in Figure 5.8.  The concrete struts alternate 

between tension and compression depending on the direction of the cyclic load. 
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Figure 5.9 - Equilibrium of Forces of Strut-and-Tie Model (adapted from 5-1) 

 From Figure 5.9, which shows the internal forces in all struts and ties in the model, 

the following relations are obtained by satisfying internal and external equilibrium. 

 F F Fv c t  sin 0        (5.20) 
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 V F Fc t  sin         (5.21) 

 The forces Fc, Ft and Fv in Equations 5.20 and 5.21 can be written in terms of the 

constitutive models for concrete (in compression or tension) and steel (stirrups) as 

 F f b jdc c w  2 cos       (5.22) 

 F f b jdt c w  1 cos       (5.23) 

F f A
jd

sv sv v
cot

       (5.24) 

 Finally, compatibility conditions between the strains in the struts can be established 

using Mohr’s circle as shown in Figure 5.10.  Compatibility is expressed in Equations 5.25 

and 5.26. 
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Figure 5.10 - Strain Transformation of Strut-and-Tie Model (adapted from 5-1) 

       1
2 2  O vcos sin sin cos     (5.25) 

       2
2 2  O vcos sin sin cos     (5.26) 
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 The solution is found by iteration.  The process is as follows: obtain centroidal 

strain from flexural analysis.  Assume  and strain, and then iterate until convergence of the 

equilibrium equations is obtained. 

5.2.4  Crack Inclination Angle 

 All the models presented in the previous sections use the angle of crack inclination 

 for the theoretical derivations, but few of them define it explicitly.  For instance, in the 

‘Modified Compression Field Theory’, presented in Section 5.2.2,  is a function of the 

average strains in the member and is found during the iterative solution. 

 Following a plasticity approach, Marti and Meyboom (5-4) developed several 

expressions for the inclination of cracks in membrane elements.  If both longitudinal and 

transverse reinforcement yield and the concrete does not crush,  can be found from 

tan



 sv yv

s y

f

f
       (5.27) 

where s st wA b jd  and sv sv wA b s .  The applied shear stress in that case 

is   u s sv y yvf f .  If only the transverse reinforcement yields and concrete crushes, 

sin





sv yv

c

f

f
        (5.28) 

and the shear stress is    u c sv yv sv yvf f f  .  Finally, if no yielding of reinforcement 

occurs but concrete crushes,  = 45 and the shear stress is u cf 
1

2
.  The governing mode 

corresponds to the minimum u. 

 Chang and Mander (5-1) also used the above formulation but limited the angle to 

min given by 

tan min 
jd

L2
        (5.29) 
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5.3  Modified Version of FIBERC 

 In this section a number of modifications to program FIBERC to accommodate the 

effect of shear deformation on the response of reinforced concrete members and frames are 

described. 

5.3.1  Equivalent Shear Area Approach 

 The shearing distortion of an infinitesimally short section of an element is shown in 

Figure 5.11.  The elastic transverse deflection caused by the shear strain  is given by 

Equation 5.25. 

dx

dvs



 

Figure 5.11 - Idealized Elastic Shear Distortion 

dv dx
G

dx
V

GA
dxs

s

   
     (5.25) 

 To account for cracking and inelasticity in the element, it is proposed to use an 

incremental form of Equation 5.25 and replace the elastic shear modulus G by the tangent 

shear modulus GT and the shear area As by an effective shear area As,eff at each section, as 

suggested by Equation 5.26. 

 d v
V

G A
dxs

T s eff





,

       (5.26) 
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 The tangent shear modulus of each fiber GT,i is computed using the corresponding 

tangent stiffness ET,i at each analysis increment as follows 

 
G

E
T i

T i
,

,
2 1 

        (5.27) 

Thus, Equation 5.26 can be rewritten as shown below, where A*
i is the area of the steel and 

concrete fibers in compression 

 d v
V

G A
dxs

T i i





 ,

*       (5.28) 

Finally, the deflection increment for the member can be obtained by integration as 

     
 


v d v

V

E A
dx

E A
dx Vs s

T s eff T s eff

 











  

2 1 2 1 

, ,

  (5.29) 

 The deflection given by Equation 5.29, caused by the shear distortion alone, is then 

added to the deflection due to flexure (Equation 2.39) to obtain the total transverse 

deflection of the element used to compute the flexibility matrix of the member. 

5.3.2  Truss Analogy Approach 

 In subsection 5.2.1, an expression for the shearing strain was found as a function of 

the crack inclination, the properties of the materials, and the geometry of the section (Eq. 

5.8).  If that equation is rewritten in incremental form and is then integrated along the length 

of the member, the increment in transverse deflection of the member is obtained as 

  v dx
E A

n
dx Vs

L

s s

v

v

L

s 






















   
  0

4

4 2
0

1 sin

sin cot
  (5.30) 

 This deflection, which is caused only by shearing distortion of the member, is added 

to the deflection due to flexure (Equation 2.39) to obtain the total transverse deflection of 

the element that will eventually be used to compute the member flexibility matrix. 
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5.4  Application of Modified FIBERC 

 Using the modified version of the program FIBERC that includes shearing 

deformations as outlined in Section 5.3, a series of runs were performed using some of the 

members and frames studied in Chapter 4.  Comparisons between responses obtained 

assuming flexural response only and including shear strains are presented.  Moreover, 

differences between these predictions and experimental results are also assessed. 

 Throughout this chapter computed response of members and frames to static and 

dynamic loads, using the program FIBERC, is presented graphically together with the 

corresponding experimental response.  With no exceptions, the experimental response is 

always shown in dashed lines and the computed response in solid lines 

5.4.1  Cantilever Beam by Hanks 

 Figure 5.12 shows the computed response of the beam studied in Section 4.3.1, 

considering only flexural behavior (solid lines), compared to experimental results (dashed 

lines).  The computed load-displacement response for this beam obtained using the 

equivalent-area model is shown in Figure 5.13 together with the experimental response.  

The strength and stiffness estimates for the first cycle of loading are very similar to those 

predicted by the flexural analysis.  However, for the subsequent cycles the computed 

strength in the positive-loading direction deteriorates substantially, coming very close to the 

measured strength in that direction, thus improving somewhat on the response computed 

considering only flexural deformations.  Nevertheless, the computed strength in the negative 

direction unexpectedly increases to about 50% of the measured strength during the last cycle 

of loading. 



 109

-40

-30

-20

-10

0

10

20

30

40

-2.0 -1.0 0.0 1.0 2.0

Displacement (in)

L
o

ad
 (

ki
p

)

 

Figure 5.12 - Prediction with flexural deformations only 

 It must be noted, though, that the crack closing prediction provided by this model is 

still too abrupt (and slightly accelerated) compared to the measured response.  In particular, 

in the positive-direction reloading branch during the third cycle a sudden drop in computed 

strength was observed and then upon crack closure a large stiffness is obtained (slightly 

larger than that computed with the flexure-only model). 
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Figure 5.13 - Prediction including shear strains by Equivalent Area Approach 
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 The load-displacement response computed using the truss-analogy approach is 

shown in Figure 5.14 and is compared to the experimental response.  A 50 angle for the 

inclination of cracks was used for this analysis, as suggested by the test results which 

included cracks with a range of inclinations between 40 and 60. 

 Although the beam capacity in the positive direction is still overpredicted, the 

overall shape of the simulated hysteresis loops is closer to those observed experimentally.  

In particular, the computed stiffnesses are less than those computed assuming only flexural 

deformations, a direct consequence of the added flexibility provided by the shearing 

deformations.  Furthermore, the crack closing is more gradual, albeit still obvious. 

 In conclusion, the prediction of the load-displacement response of this beam was 

significantly improved by introducing a model for shearing deformations.  In particular, the 

truss analogy gave an overall better simulation. 
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Figure 5.14 - Prediction including shear strains by Analogous Truss Approach 

 In order to study the effect of crack inclination on the load-displacement response of 

the model, an additional analysis was performed on this specimen, this time using a 40 

inclination for the cracks.  Figure 5.15 shows the computed response for  equal to 40.  

The computed stiffness of the element is slightly higher, particularly during the initial 

loading,  Likewise, the strength is slightly higher than that computed response for  equal to 
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50.  However, it is clear that a large variation in the crack inclination angle does not affect 

significantly the overall response of the member. 
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Figure 5.15 - Prediction by the Truss Analogy Method using =40 

5.4.2  Cantilever Beam by Popov et al. 

 The beam studied in Section 4.3.2 was analyzed again to further evaluate the effect 

of the shear deformation model.  Figure 5.16 presents the analytical load-displacement 

hysteretic loops, considering flexural behavior only, together with the experimental 

response. 

 The equivalent area approach was utilized next to compute the cyclic response of 

the beam.  This is shown in Figure 5.17, along with the experimental results.  It is obvious 

that this method provides only a slight improvement in the computed response.  Although 

the estimated stiffness is slightly reduced in some cycles, strength levels are not accurately 

predicted.  Additionally, the computed hysteretic loops display no signs of pinching. 
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Figure 5.16 - Prediction assuming flexural deformations only 
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Figure 5.17 - Prediction including shear strains by Equivalent Area Approach 

 Figure 5.18 shows the computed load-displacement response for the same beam 

using the truss analogy method.  A 45 angle for the crack inclination was used for the 

analysis.  Crack angles between 30 and 45 were measured during testing. 
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 In contrast to the response computed considering only flexural deformations, a 

significant reduction in the width of the hysteresis loops was obtained with this model.  

Moreover, the unloading stiffnesses computed were quite similar to the measured 

stiffnesses.  The strength prediction in the positive direction is also improved in comparison 

with the flexural analysis.  It is concluded that for this beam the analogous truss model gives 

an improved, although not perfect, estimation of the load-displacement behavior under 

cyclic load.  In particular, the reloading stiffness and the pinching of the hysteresis loops 

were not accurately predicted. 
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Figure 5.18 - Computed Response including Shear Deformations by Analogous Truss 
Approach 

 Figure 5.19 presents an additional computed load-displacement response for the 

same beam, using the truss analogy with a  of 35 to further evaluate the influence of the 

crack inclination on the computed response.  The agreement with the experimental response 

deteriorates slightly for this angle, introducing higher stiffness and fatness into the 

hysteresis loops. 

 The computed response for this specimen together with those of the previous 

specimen indicate that the predicted stiffness of the beams increases as the crack inclination 
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angle decreases.  Likewise, energy-absorption capacity of the member tends to increase with 

smaller crack inclination angles. 
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Figure 5.19 - Computed Response using the Truss Analogy Method using =35 

5.4.3  Two-Story Frame 

 The specimen presented in this section is the two-story frame, under quasi-static 

lateral load, previously described and studied for flexural behavior in Section 4.4.  Results 

of that investigation are shown again here for completeness.  Figure 5.20 displays the 

comparison between computed and experimental behavior under repeated load, while Figure 

5.21 shows the case for load reversals. 

 The numerical load-displacement response using the equivalent-area approach 

plotted with the experimental response for the repeated and cyclic loading cases are 

presented in Figures 5.22 and 5.23, respectively.  It is clear that the inclusion of the 

equivalent-area method for shear deformations in the computed response has virtually no 

discernible effect. 
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Figure 5.20 - Computed Flexural Response under Repeated Load 
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Figure 5.21 - Computed Flexural Response under Cyclic Loads (typical loops) 



 116

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

Displacement (mm)

L
o

ad
 (

kN
)

 
Figure 5.22 - Computed Response including shear strains using Equivalent-Area Approach 
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Figure 5.23 - Computed Response including shear strains using Equivalent-Area Approach 

 Results using the truss analogy model to compute the load-displacement response of 

the frame under repeated loads are shown in Figure 5.24, while those under cyclic loads are 

displayed in Figure 5.25.  A 45 crack inclination was used in the computations. 
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Figure 5.24 - Repeated Load with shear strains by Truss Analogy Approach 
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Figure 5.25 - Cyclic Load with shear strains by Truss Analogy Approach 

 In contrast to the equivalent-area model, the effect of shear deformations on the 

frame load-displacement behavior is more pronounced.  For the repeated-loading test, the 

initial stiffness is appreciably reduced as compared to that observed experimentally.  On the 

other hand, the unloading and reloading stiffnesses are now closer to the measured 
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stiffnesses.  The estimated capacity of the frame is slightly reduced compared with the 

response computed using the equivalent-area approach. 

 The effect of shear deformations for the computed response for cyclic loading is 

improved.  The width of the simulated hysteresis loops is reduced compared with those 

computed considering only flexural deformations (Figure 5.19) and the unloading slopes at 

the loop ends are very close to those measured experimentally.  There is still, however, a 

lack of pinching in the computed hysteresis loops. 

5.4.4  Four-Story Building 

 The specimen reviewed in this section is the four-story building tested pseudo-

dynamically and described in Section 4.5.  In that section, a study of the building 

considering only flexural deformations was carried out.  Figures 5.26 and 5.27 show once 

more the results of the dynamic analysis. 
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Figure 5.26 - Roof Displacement Time History Considering Only Flexural Deformations 
and using a Dynamic Analysis 

 As reported in Section 4.5.3 the damage sustained by the structure was apparently 

very limited.  In particular, no diagonal cracks in members were reported, and just a few of 

the beam-column joints displayed some diagonal cracking.  These results suggest that shear 

deformations in the members were probably minor, which is expected considering the 
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slenderness of the elements.  Nevertheless, analysis of the building was carried out using the 

truss analogy approach to evaluate the performance of the shear deformation model for this 

type of structure.  A 45 crack inclination angle was chosen. 
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Figure 5.27 - Load-Displacement Prediction Considering Only Flexural Deformations and 
using a Dynamic Analysis 

 Results of the analysis are shown in Figures 5.28 and 5.29.  In the first of these 

figures, the roof displacement time history is compared with the pseudo-dynamic response.  

In general, this prediction is somewhat similar to that obtained without the effects of shear 

deformations (Figure 5.26).  For this case, however, the vibration period has increased 

slightly as expected.  On the other hand, the computed displacement response during the 

initial four seconds decreased and shows apparent effects of higher modes of vibration.  

Finally, the computed displacement amplitudes for the last four seconds increased, but the 

prediction is still very different from the experimental data. 

 The computed load-displacement response, displayed in Figure 5.29, hardly 

resembles the response considering only flexural deformations (Figure 5.27) or the 

experimental response (Figure 4.49).  However, a slight reduction in the computed average 

secant stiffness, from that observed in the computed flexural response is apparent. 
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Figure 5.28 - Roof Displacement Time History including  shear strains (Truss Analogy) 
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Figure 5.29 - Load-Displacement Prediction including  shear strains (Truss Analogy) 

 Because of the poor prediction obtained using the dynamic analysis, a quasi-static 

analysis was performed similar to that carried out in Section 4.5.4.  The base-shear time-

history computed response generated with the inclusion of shear deformations using the 

truss analogy is shown in Figure 5.30.  A slightly improved prediction is obtained for the 
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first three seconds (see Figure 4.56).  However, for the last five seconds the inclusion of 

shear deformations has practically no effect on the computed response. 
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Figure 5.30 - Quasi-Static Computed Base Shear Time History Considering Shear 

Deformations Compared with Measured Response 

 

 Figure 5.31 shows the computed base shear-roof displacement response for the 

same model.  A slight reduction in the computed unloading stiffnesses as well as a moderate 

reduction in the size of the hysteresis loops are observed. 

 The computed responses illustrated in Figures 5.30 and 5.31 confirm that the quasi-

static analysis is more appropriate for the investigation of the experimental results for this 

structure. 
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Figure 5.31 - Quasi-Static Computed Base Shear-Roof Displacement Response Considering 

Shear Deformations 

5.5  Summary of Investigation Incorporating Shear-Deformation Models 

 Several analytical models to evaluate the shearing deformations in concrete 

members after cracking were presented, and two were implemented in a modified version of 

program FIBERC. 

 Although the models by Collins and Hsu are theoretically consistent and reportedly 

give good analytical results, they are very elaborate and introduce a large computational 

effort due to their iterative nature.  Therefore, they were not considered further in this study. 

 A very simple model was developed in which an equivalent shear area, computed as 

the sum of the area of the fibers in compression at each step, together with the tangent shear 

modulus of those fibers, was used to estimate the shear deformations in the members, 

keeping the elastic formulation of the shear component of the member-flexibility matrix. 

 Another model considered in this chapter was a truss analogy consisting of 

rectangular panels composed of diagonal concrete compression struts, stirrup stringers, and 

reinforcing-bar chords. 
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 It was found that the equivalent-area method did not generally improve significantly 

the agreement of the prediction with the experimentally-observed results.  For some of the 

specimens evaluated in this section, for which shear deformations were expected to have a 

significant effect in the overall computed response, the model had practically no influence 

on the response. 

 The analogous truss model was found to have a greater effect on the prediction of 

inelastic response of reinforced concrete members and frames under repeated and reversed 

loads, primarily by reducing the structural stiffness.  However, it was obvious that the model 

developed and used in this chapter did not completely account for the observed total 

response of the specimens studied.  Therefore, in an attempt to complement this model, a 

method to include deformations induced by deterioration of bond between concrete and 

reinforcing steel is introduced in the following chapter. 
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CHAPTER 6 

Model for Anchorage Slip of Members 

6.1  Effects of Bar Extension and Slip in Member Deformations 

 Anchorage slip of reinforcing bars at the connections of reinforced concrete 

members can constitute a major source of inelastic deformations.  Such deformations are 

specifically caused by straining and yielding of reinforcing bars inside the joint and slip of 

reinforcing bars with respect to the surrounding concrete in the joint and adjacent member 

ends. 

 The penetration of yielding of reinforcement into the joint produces extension of the 

bars that is not normally considered in the member models presented in the previous 

chapters.  Slip of the reinforcing bars is due to the loss of bond between steel and concrete 

inside the joint and in the plastic hinge zone of the members. 

 The most important consequences of the two phenomena mentioned above in the 

behavior of members, as observed experimentally, have been summarized by Kaku and 

Asakusa (6-9).  First, pinching of the force-deflection hysteresis loops of the members 

occurs, resulting in a loss of energy absorption capacity.  Due to the bond loss, a change of 

shear transfer mechanism inside the joint occurs because the truss action disappears and a 

single diagonal compression-strut emerges.  Also, large deformations associated with slip 

induce wider cracks and concentrated damage in the plastic hinge region which complicates 

repair and rehabilitation of the member.  Finally, a reduction in moment capacity in 

adjoining members may be observed. 

 In addition to the effects of extension and slippage of the reinforcement, further 

deformations are caused by joint distortion.  However, that effect will not be considered in 

this chapter. 

 



 125

6.2  Previous Research on Anchorage Slip 

 The effect of the deformations caused by anchorage slip and bond deterioration in 

the beam-column joint and in the plastic hinge regions of members has been studied 

extensively both experimentally and analytically.  In this section, a brief review of the 

results and models developed in some of those studies are presented. 

 A complete set of studies on anchorage slip has been conducted in the last two 

decades at the University of California, Berkeley (6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-10).  In 

the research conducted by Ciampi (6-2) and Eligehausen (6-3) a large number of pull-out 

tests were performed on single, deformed bars embedded five diameters into concrete blocks 

representing the confined region of beam-column joints.  Based on the results of such tests, 

a relatively simple analytical model to simulate local bond-slip response of single bars 

embedded in concrete under generalized excitations was developed.  This model is based on 

the assumption that bond deterioration depends on concrete damage as a function of the 

joint’s total dissipated energy.  This assumption, according to the authors, is correct for low-

cycle fatigue loading (small number of cycles at large strains). 

 The model was then used to predict the bond behavior of bars anchored in joints of 

frames subjected to cyclic load, and good comparisons to experiments were obtained.  

Furthermore, a number of parametric studies were performed to evaluate the influence of 

loading history, bar diameter and strength, anchorage length, number of cycles and strain 

magnitude, among others, on the behavior of embedded bars. 

 Filippou (6-4, 6-7) developed a detailed model for the flexural analysis of 

reinforced concrete members and beam-column joints, including explicitly the effect of 

bond deterioration using the model developed by Ciampi and Eligehausen (6-2, 6-3).  In his 

model, Filippou divides the element into subregions corresponding with the locations of 

vertical flexural cracks that penetrate through the depth of the section, as shown in Figure 

6.1.  One such region is the beam-column joint. 
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Subregions
 

Figure 6.1 - Filippou’s Critical Regions Model (adapted from 6-4) 

 Figure 6.2 shows the idealization of a typical interior joint of a frame.  The bars 

within the joint are assumed to consist of top and bottom layers which are discretized into a 

number of segments.  The displacements and stresses along the bar are formulated, using 

weighted residual and mixed finite element approaches, in such a way that a direct 

interaction relation between the variables at the two end sections of the joint is obtained.  

Finally, using such a relation, together with equilibrium of forces at the ends of the joint, the 

solution to any imposed history of deformations can be obtained. 
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Figure 6.2 - Filippou’s Joint Model (adapted from 6-4) 

 Tada and Takeda (6-13, 6-14) also developed a detailed analytical model to study 

the bond in beam-column joints.  In their model, plastic hinge regions of fixed length are 

assumed at the element ends and they are discretized into a number of concrete and steel 

layers (fibers) whose behavior is governed by pre-determined constitutive hysteretic rules.  
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In the joint core the concrete is assumed rigid while the bars are discretized into small 

segments that are connected to the surrounding concrete by bond links, as shown in Figure 

6.3.  These links follow a simple bond-slip constitutive model developed by the authors. 

Plastic Hinge

Rigid Beam
Concrete

Rigid Column
Concrete

Rigid Joint
Concrete

Concrete Fibers

Bond Links

Steel Fiber

 

Figure 6.3 - Tada’s Joint Model (adapted from 6-13) 

 Using the model outlined above, Tada and Takeda (6-14) conducted a series of 

comparisons to experimental results from beam-column subassemblage tests and obtained 

close prediction of the test results. 

 Saatcioglu and Alsiwat (6-1, 6-11, 6-12), at the University of Ottawa, developed a 

model to account for anchorage slip of reinforcing bars.  Initially, a monotonic model for the 

force-deformation behavior of a single bar embedded in concrete was developed (6-1).  The 

procedure accounts for the accumulation of elastic strains and plastic strains along the 

embedded length which result in net extension of the bar.  The model includes an estimation 

of the bar slip when the stress builds up along its embedded length inducing a failure of the 

steel-concrete bond.  

 The force-deformation relationship found as outlined above was used by Saatcioglu 

et al (6-12) as the envelope for a hysteretic model.  Finally, Saatcioglu and Alsiwat (6-11) 

applied their hysteretic model to the analysis of reinforced concrete frames. 

 Because of their simplicity and good performance, both the monotonic and cyclic 

models developed by Saatcioglu and associates will be used in this study in a slightly 

modified form.  A brief but complete description of the models and their implementation in 
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the program FIBERC is presented in Sections 6.2.1, 6.2.2 and 6.3. A more detailed account 

of the models is given elsewhere (6-1, 6-11). 

6.2.1  Monotonic Model by Saatcioglu et al. (6-1) 

 Using the stress and strain distributions depicted in Figures 6.4b and 6.4c, the 

extension of the embedded reinforcing bar is computed for each one of four regions: elastic, 

yield plateau, strain hardening and pull-out cone. 
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Figure 6.4 - Anchorage Extension Model by Saatcioglu et al. (adapted from 6-1) 

 In the region of length Le, where the reinforcing bar stress is elastic, a constant 

average bond stress given by Equation 6.1 is assumed, 

u
f d

le
y b

d


4

         (6.1) 

in which db is the bar diameter and ld is the development length given by Equation 6.2.  In 

this and all other equations for the model, SI units are used. 
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 Using the average bond stress of Equation 6.1, the length Le of the elastic region is 

L
f d

ue
s b

e


4

         (6.3) 

in which fs is the maximum elastic steel stress.  If Le is greater than the available elastic 

length, the bar will slip.  Such a case is analyzed later in this section. 

 After yielding, large strains in the steel occur and the concrete between the ribs of 

the reinforcing bar crushes.  Then, the bond stress becomes primarily frictional and can be 

taken as 

u
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55 0 07
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     (6.4) 

where SL/HL is the ratio of spacing to height of the reinforcing bar ribs.  The segment of the 

bar in which stresses are at the yield plateau can be written as 

L
f d

uyp
s b

f



4

        (6.5) 

in which fs is the increment in stress between the starting and end points of the yield 

plateau.  If there is no stress increase in this region, that is fs=0, the length Lyp is zero. 

 If the reinforcement strain increases beyond the end of the yield plateau, the length 

of the bar segment in strain hardening can be computed again assuming frictional bond as  

L
f d

ush
s b

f



4

        (6.6) 

In this case fs is the difference between the maximum stress fs and the stress at the onset of 

strain hardening. 

 In the zone adjacent to the concrete face a pullout cone may be formed because of 

the tensile stresses that develop in the surrounding concrete.  In that case, a segment Lpc of 
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constant stress and strain exists in the bar as shown in Figures 6.4b and 6.4c.  However, if 

adequate transverse reinforcement is provided close to the concrete face, this pullout may 

not occur. 

 Finally, the bar extension can be computed by integrating the strain distribution 

(Figure 6.4c) over the embedded length as 

         ext s pc s sh sh sh y yp y eL L L L     05 05 05. . .   (6.7) 
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Figure 6.5 - Bond-Slip Model by Saatcioglu et al. (adapted from 6-1) 

 Slip of the reinforcement, which occurs when the entire embedded length is 

stressed, is estimated by means of the bond-slip model shown in Figure 6.5, using the bond 

stress acting at the end of the embedded length of the reinforcing bar. 

 The bond stress for the initial loading is given by 

u uu
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





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
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0 4.

        (6.8) 

where uu, the ultimate bond stress, is defined by the expression 

u d f
u

b c 



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
20 4 30

      (6.9) 
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where  s cf1 30 ' , s2=3.0 and s3=SL. 

 Therefore, the bar slip during the ascending branch can be computed as 

 s s
e

u

u

u








1         (6.10) 

where ue is the bond stress at the end of the embedded length.  This stress is obtained using 

Equation 6.11 in which Le is the available elastic length which is equal to the embedded 

length minus the plastic length (Lyp+Lsh+Lpc). 

 


u
f d

Le
s b

e4
         (6.11) 

 For bars that end in a hook, an additional deformation term h must be added.  Such 

deformation of the hook is a function of the force in the hook, and can be obtained from 

Equation 6.12 

P Ph hu
h 



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
2 54

0.2

.
       (6.12) 

where Ph is the force in the hook and Phu = 271(0.05db-0.25). 

 Upon unloading, the elastic deformation r given by Equation 6.13 is recovered 

while the plastic extension and slip are residual permanent deformations. 

 r y t
eL

L
 



2

       (6.13) 

6.2.2  Hysteretic Model by Saatcioglu et al. (6-12) 

 The hysteretic model for anchorage slip of reinforced concrete members is 

formulated in terms of the moment-rotation relationship at the member ends.  The model 

consists of a primary curve, which is constructed based on the monotonic extension-slip bar 

model presented earlier, and a number of hysteretic rules. 

 The primary curve is obtained by performing a flexural section analysis to calculate 

the moment in the end section and the strains in the reinforcing bars.  Using those strains, 
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the extension and slip in the bar are computed and then, the rotation of the section is 

estimated with Equation 6.14 





d c

        (6.14) 

where (d-c) is the distance between the bar and the neutral axis of the section. 
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Figure 6.6 - Moment-Rotation Primary Curve model by Saatcioglu et al. 

 Figure 6.6 shows a typical primary curve resulting from this procedure.  In this 

relationship, yielding is taken as the point at which the onset of strain hardening in the steel 

in tension has been reached.  Before this point is reached the response is considered elastic 

with a stiffness ke.  The post-yield branch joins the yield point with the point at which the 

maximum concrete compression strain is equal to 50 (post-peak strain at which 50% of the 

maximum concrete strength is resisted).  The stiffness of this branch is kp.  Finally, the 

unloading branch, with stiffness ku, is computed using the recovered deformation of the 

bars. 
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Figure 6.7 - Hysteretic Model by Saatcioglu et al. (adapted from 6-12) 

 A typical moment-rotation response to cyclic loading is shown in Figure 6.7.  The 

set of rules that govern the response are empirical and developed based on experimental 

observations.  The hysteretic rules are as follows: 

1. Loading and unloading before first yielding is elastic with stiffness ke
+ or ke

-. 

2. After first yielding, loading follows the slope kp
+ (kp

-) and unloading follows the slope 

ku
+ (ku

-).  Subsequent reloading in the opposite direction aims at the previous maximum 

excursion (or yield point if no yielding in that direction has taken place). 

3. Unloading after a moment reversal before reaching the previous maximum is parallel to 

the unloading branch from the previous maximum. 

4. Reloading after small-amplitude cycles is directed at the second previous maximum 

and once this is reached, is directed at the previous maximum. 

5. Reloading before complete unloading aims at the immediate previous maximum. 
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6.3  Implementation of Anchorage Slip Model 

 The program FIBERC was further modified to include the effect of anchorage slip 

following Saatcioglu et al’s model.  The new member idealization, shown in Figure 6.8, 

introduces rotational springs at both ends of the fiber element.  Additionally, rigid zones in 

place of the joints are also introduced as discussed in Subsection 6.3.2. 

Rotational
Spring

L

Joint
Rigid Zone

Fiber
Element

 

Figure 6.8 - Member Idealization for Anchorage Slip Model 

 The extension-slip model by Saatcioglu was modified as follows.  First, it was 

assumed that the beam-column joint has adequate transverse reinforcement to prevent the 

pullout cone from occurring and therefore, Lpc=0 in Equation 6.7.  Next, it was assumed that 

no increment in stress takes place during the yield plateau, and hence, fs=0 in Equation 6.5 

and consequently, Lyp=0 as well.  Thus, Equation 6.7 can be rewritten as 

    ext s sh sh y eL L  0 5 0 5. .     (6.15) 

 Finally, for hooked bars or bars that are welded to end plates, it was assumed that 

no slip or deformation at the end of the straight portion of the bar takes place, that is, s=0 

and h=0. 
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6.3.1  Addition of Hysteretic Rotational Springs 

 To include the effect of the rotational spring in the member, a modification of the 

member stiffness matrix was developed as outlined below. 

 Equation 2.64 was rewritten in an expanded form as given by Equation 6.16.  It 

must be noticed that the stiffness coefficients kii of the member stiffness matrix of this 

equation are not equal to those of Equations 2.54 through 2.61. 
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 If each one of the rows of Equation 6.16 is written separately, a set of simultaneous 

equations is obtained (Equations 6.17) 
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 (6.17) 

 In the previous equations  represented the rotation at the end of the member.  If 

the member is rigidly attached to the joint, as assumed in the theoretical development 

presented in Chapter 2,  is also the rotation of the joint. 

 When a rotational spring is introduced at the end of the member,  is no longer 

equal to the joint rotation.  Instead, the rotation of the joint  can be expressed as the 

rotation of the end of the member plus the additional rotation in the spring.  The spring 

rotation increment can in turn be written as the member-end moment increment divided by 

the spring’s tangent rotational stiffness, kR (Equation 6.15). 
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     (6.18) 

 Using Equation 6.18, the set of Equations 6.17 can be rewritten in terms of the joint 

rotations at both ends of the element, and a new set of equations is obtained (Equations 

6.19). 
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Rearranging the force and displacement terms, these become 
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Finally, these equations are assembled in matrix form in Equation 6.20. 
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 Equations 6.20 can be written in matrix notation as 

     L F K U        (6.21) 

from which the force vector can be obtained in terms of the displacement vector pre-

multiplied by a modified member stiffness matrix [K*] as in Equation 6.22. 

                F L K U T K U K U  1 *   (6.22) 

In this expression, matrix [T] is given by Equation 6.23 shown below. 
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where, 
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6.3.2  Addition of Joint Rigid Zones 

 The beam-column joints in reinforced concrete frames are very rigid before 

cracking.  Once they crack and bond deteriorates, considerable distortion of the joints can 

take place.  The modeling of such deformations is quite complex and is beyond the scope of 

this study.  However, a simple model was introduced to program FIBERC to account for this 

behavior as described below. 

 The displacements at the end of the members can be written in terms of the 

displacements at the joints as 

     U G U         (6.25) 

Likewise, the forces at the joints can be written as a function of the member end forces as 

      F G FT       (6.26) 

2dA 2dB

U'A
UA

U'B
UB

L

Lm

 

Figure 6.9 - Effect of Joint Size 

 The matrices G and GT are given by Equations 6.27 and 6.28.  In those equations, da 

and db are the dimensions of the joints (Figure 6.9) and  is a joint stiffness factor.  The 

magnitude of  can be taken as between 0 and 1, and in this way the stiffness of the joint 

can be indirectly reduced. 
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 Equation 6.29, which relates member-end forces to member-end displacements, was 

obtained in Chapter 2 (Equation 2.64) and is equivalent to Equation 6.16. 

     F K U        (6.29) 

 Introducing Equations 6.29 and 6.25 into Equation 6.26, a new stiffness matrix for 

the member [K] is obtained as follows 

                F G K G U K UT    (6.30) 

6.4  Application of Anchorage Slip Model 

 In this section the response predictions of some of the elements and frames studied 

in Chapters 4 and 5 are reviewed using the models developed above to account for the effect 

of anchorage slip and rigid joints. 

 As in Chapter 5 the computed response of members and frames to static and 

dynamic loads, using the program FIBERC, is presented graphically together with the 

corresponding experimental response.  Once again, the experimental response is shown in 

dashed lines and the computed response in solid lines 
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6.4.1  Cantilever Beam by Hanks 

 The first specimen to be analyzed here is the beam described in Section 4.3.1 tested 

by Hanks.  Figure 6.10 shows the results of the analysis of this beam including flexural and 

shear deformations obtained in Section 5.3 (the measured response is also plotted with a 

dashed line).  In Figure 6.11 the computed response, including the effects of anchorage slip 

is presented together with the experimental response. 

 Although the initial stiffness of the beam is underestimated by the model, the 

overall shape of the hysteretic loops is closely simulated, including a reduction in the width 

of the loops.  Unloading stiffnesses, reloading stiffness in the negative direction, and 

strength levels are reasonably well predicted.  Moreover, the computed crack-closing effect 

in the positive loading direction is delayed and more gradual than in previous models. 
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Figure 6.10 - Computed Response Including Shear Deformations 
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Figure 6.11 - Computed Hanks’ Beam Response Including Anchorage Slip 

6.4.2  Cantilever Beam by Popov et al. 

 The next specimen considered is the beam tested by Popov et al. that was described 

and studied for flexural response in Section 4.3.2, and for combined flexural and shear 

response in Section 5.3.  Figure 6.12 shows the results of the computed response including 

flexural and shear deformations (measured experimental response is also plotted). 
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Figure 6.12 - Computed Response Including Shear Deformations 
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Figure 6.13 - Computed Response Including Anchorage Slip 

 In Figure 6.13 the computed load-displacement response, including the anchorage 

slip effect, is shown together with the experimental response.  The two initial loops of the 

simulation are very close to those observed experimentally in terms of both strength and 

stiffness.  For the large displacement loops the model fails to capture the significant 

pinching that occurred in the test.  Likewise, the model is unable to predict the drop in 

capacity for the last cycle.  Nevertheless, the overall shape of the loops is closer to the shape 

of the experimentally observed loops than the computed response which did not include bar 

slip. 

 The two specimens analyzed above were beams that were connected to large blocks 

of concrete (Figures 4.11 and 4.17) and therefore, they did not contain a real beam-column 

joint .  In contrast, the specimens studied in Sections 4.4 and 4.5 were actual frames for 

which the model for beam-column joints developed in Section 6.3.2 can be directly applied 

as discussed in the following sections. 

6.4.3  Two-Story Frame 

 A series of runs using the modified version of FIBERC that accounts for joint 

rigidity and anchorage slip was performed on the two-story frame described in Section 4.4.  
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Figures 6.14 and 6.15 show the load-displacement response, involving both flexural and 

shear deformations, of that frame as reported in Section 5.3. 

 Figure 6.16 shows the comparison between the computed response for rigid joints 

and the experimental response under repeated loads.  The computed lateral strength of the 

frame increases with a much better agreement with the experimental response, which is even 

slightly overestimated (whereas before it was more seriously underestimated).  The initial 

stiffness increases as well and closely follows that observed in the experiment.  Moreover, 

the unloading and reloading slopes also increased and are now slightly steeper than those 

measured during the test. 
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Figure 6.14 - Computed Repeated Load Response including Shear Deformations 
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Figure 6.15 - Computed Reversed Load Response including Shear Deformations 

 For the same structural model, Figure 6.17 shows the computed load-displacement 

response and the measured response of the frame to cyclic loads.  The hysteresis loops 

regained some of the width of the flexure-only response, and the unloading and reloading 

stiffnesses increased, particularly in the small-displacement cycle. 
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Figure 6.16 - Computed Response with Shear Deformations (Truss Analogy) and Rigid 
Joints 
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Figure 6.17 - Computed Cyclic Response with Shear Deformations (Truss Analogy) and 

Rigid Joints 

 A 50% reduction in the rigidity of the joints was applied to the model to investigate 

the effect of joint stiffness on the structural response.  Figure 6.18 displays the computed 

load-displacement response for this structural model under repeated loads.  Naturally, the 

initial stiffness of the model decreased, although not by much.  The computed response is 

still a very good estimate of the measured response.  Likewise, the estimated capacity of the 

frame reduced slightly and is just 2% less than that obtained experimentally.  The unloading 

and reloading stiffnesses are very close to the measured stiffnesses. 
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Figure 6.18 - Computed Response including Shear Deformations (Truss Analogy) and 50% 
Reduction in Joint Stiffness 
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Figure 6.19 - Computed Cyclic Response Including Shear Deformations (Truss Analogy) 
and 50% Reduction in Joint Stiffness 

 Figure 6.19 shows the frame’s computed and experimental response to cyclic loads.  

In general, the frame strength and unloading stiffness are well predicted for all cycles.  Once 

again, pinching of the hysteresis loops is not reproduced. 
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Figure 6.20 - Computed Repeated Load Response Including Shear Deformations (Truss 
Analogy), Anchorage Slip, and 50% Reduction in Joint Stiffness 
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Figure 6.21 - Computed Cyclic Load Response Including Shear Deformations (Truss 
Analogy), Anchorage Slip, and 50% Reduction in Joint Stiffness 

 At this point, anchorage slip effects were introduced into the structural model of the 

frame that was just studied (with 50% rigidity of the joints).  Figure 6.20 shows the 

computed load-displacement response as compared to the measured response for the 

repeated load case.  A drastic reduction in the initial stiffness and strength of the specimen 
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was obtained, confirming the significant influence of the anchorage slip effect in the 

model’s response.  The unloading and reloading stiffnesses of the subsequent cycles were 

somewhat reduced although to a lesser degree.  However, the agreement with the 

experimental response deteriorates considerably. 

 For the cyclic-response case, shown in Figure 6.21, the computed response matched 

reasonably well the strength in the positive direction and the unloading stiffnesses.  

Furthermore, the width of the cycles decreases and hence the predicted energy absorption 

decreases.  However, the strength of the frame in the negative direction was underpredicted 

by approximately 15%. 
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Figure 6.22 - Repeated Load Response including Shear Deformations (Truss Analogy), 
Anchorage Slip, and Rigid Joints 

 The final computations for this series, illustrated in Figures 6.22 and 6.23, were 

performed on a structural model with rigid joints and considering again anchorage slip.  For 

the repeated load case, the estimated initial strength and lateral capacity of the frame were 

increased over those predicted by the model with only 50% joint rigidity.  However, the 

predictions still underestimated appreciably the actual response of the specimen.  In 

contrast, the unloading and reloading stiffness were practically unaffected and agreed well 

with those observed during testing. 
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 The computed response to cyclic loads was not affected significantly by the 

increase in joint rigidity.  Although the simulated hysteretic loops were slightly wider, the 

estimated strength in the negative direction was closer to that measured experimentally. 
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Figure 6.23 - Cyclic Load Response including Shear Deformations (Truss Analogy), 
Anchorage Slip, and Rigid Joints 

6.4.4  Four-Story Building - Dynamic Analysis 

 The final specimen examined in this chapter is the four-story building studied in 

Section 4.5 for flexural behavior and in Section 5.4 for combined flexural and shear 

deformations.  As discussed in those sections, the dynamic analysis method may be 

inappropriate for this study.  However, it is carried out here for completeness.  Section 6.4.5 

presents an additional series of analyses using a quasi-static approach. 
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Figure 6.24 - Computed Displacement Time History considering  Shear Deformations 
Joints 
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Figure 6.25 - Load-Displacement Response with Shear Deformations and 100% rigid joints 

 The structural model developed in Section 5.4 is modified to include rigid joints.  

The results of the computed response to ground motion are shown in Figures 6.24 and 6.25. 

 The computed displacement time history obtained (Figure 6.24) is actually very 

similar to that computed without joint rigidity in Section 5.4 (see Figure 5.28); only minor 
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differences in displacement amplitudes are observed.  Thus, it seems that for this structure 

the joint stiffness apparently does not play a major role in the structural behavior.  However, 

the computed load-displacement response of the model , shown in Figure 6.25, does suggest 

a somewhat larger average secant stiffness estimate for the structure. 

 From the above discussion it is confirmed that the joint rigidity contributes to the 

structural stiffness but in a relatively minor way. 

 The predicted responses of the structure, shown in Figures 6.24 and 6.25, are not in 

good agreement with those observed experimentally (Figures 4.41 and 4.43).  This is mainly 

reflected in the vibration period and the average stiffness of the computed response since 

both tend to be smaller than those observed during the test.  Likewise, the predicted 

displacement amplitudes are generally smaller than those measured. 

 In an attempt to improve the structural model, a further modification was introduced 

by including rotational springs at the ends of the members to account for anchorage slip.  

Figures 6.26 and 6.27 show the predicted response of such a model to the ground motion. 

 Figure 6.26 shows that a slight improvement in amplitude response in the first four 

seconds is obtained, but the agreement is still worse than the flexure-only response.  

However, the amplitude is actually reduced significantly for the last four seconds of 

response.  Figure 6.27 shows that the computed average secant stiffness of the structure is 

closer to that observed experimentally.  One can conclude from these responses that 

anchorage slip has a large influence in both displacement amplitude and stiffness of the 

model. 
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Figure 6.26 - Displacement Time History with  shear strains, 100% rigid joints and 
Anchorage Slip 
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Figure 6.27 - Load-Displacement Response with  shear strains, 100% rigid joints and 
Anchorage Slip 

6.4.5  Four-Story Building - Quasi-Static Analysis 

 As mentioned at the beginning of Section 6.4.4, an additional series of analyses 

were carried out on this structure using displacement-controlled quasi-static loads.  Initially, 
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a flexure-only analysis including rigid joints was performed, and the results are shown in 

Figures 6.28 and 6.29. 

 The computed base-shear time history response shown in Figure 6.28 is very similar 

to that obtained in Section 4.5.4 (Figure 4.56) in which a model without rigid joints was 

used.  This result suggests that the inclusion of the joint rigidity does not affect the response 

of the structure. 

 Figure 6.29 shows the computed base shear-roof displacement relationship for the 

model with rigid joints.  Again, the prediction is almost identical to that provided by the 

flexure only model (with no rigid joints) of Section 4.5.4, confirming that the response of 

this four-story structure is not affected significantly by the stiffness of the joints.  This result 

can be explained by the fact that the size of the joint rigid zone is generally very small 

compared to the length of the members and the large stiffness of the beams (which include 

part of the slab as a flange). 

 At this stage, inelastic rotational springs are introduced to the structural model at the 

member ends to account for anchorage slip effects.  Figures 6.30 and 6.31 illustrate the 

performance of this modified model. 

 The computed base-shear time history response shown in Figure 6.30 is a close 

prediction of the measured response and represents a significant improvement over the 

model which considers flexural deformations only (Figure 6.28).  In addition, the base 

shear-roof displacement prediction shown in Figure 6.29, is also closer to the experimental 

response (Figure 4.48) due to reduction in unloading and average secant stiffnesses. 
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Figure 6.28 - Quasi-Static Computed Base Shear Time History with Rigid Joints Compared 
with Measured Response 
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Figure 6.29 - Quasi-Static Computed Base Shear-Roof Displacement Response with Rigid 

Joints 
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Figure 6.30 - Quasi-Static Computed Base Shear Time History Considering Anchorage Slip 

and Rigid Joints Compared with Measured Response 
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Figure 6.31 - Quasi-Static Computed Base Shear-Roof Displacement Response Considering 

Anchorage Slip and Rigid Joints 
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Figure 6.32 - Quasi-Static Computed Base Shear Time History Considering Shear 

Deformations, Anchorage Slip and Rigid Joints Compared with Measured Response 
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Figure 6.33 - Quasi-Static Computed Base Shear-Roof Displacement Response Considering 

Shear Deformations, Anchorage Slip and Rigid Joints 

 Finally, the truss analogy method for shear deformations is introduced into the 

structural model and the results are shown in Figures 6.32 and 6.33.  The computed base-

shear time history response worsens slightly during the first three seconds with respect to 
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the model with anchorage slip and no shear deformation effects.  However, the prediction is 

very close to the measured response for the last five seconds of the analysis.  These results, 

together with the fact that the computed base shear-roof displacement relationship (Figure 

6.33) is much closer to the experimental response (Figure 4.48), imply that the model that 

considers both shear deformations and anchorage slip provides an overall better simulation 

of the experimental results. 

6.5  Summary on Anchorage Slip Modeling 

 A number of theoretical models developed by several researchers to account for 

anchorage slip in reinforced concrete members were briefly described.  The model by 

Filippou uses a bond-slip idealization, based on a large number of tests, developed by other 

researchers at the University of California.  The model is involved and requires a large 

computational effort.  In addition, the mathematical formulation in which it is based is not 

completely compatible with that of FIBERC. 

 The model developed by Tada is based partially on a fiber formulation of the plastic 

hinge zone at the member ends.  Additionally, the reinforcing bars inside the joint are 

discretized in short segments which are connected to the surrounding concrete by bond 

links.  This model seems appropriate for future refinement of Program FIBERC because of 

the compatibility with the fiber formulation. 

 Saatcioglu’s model is simple and has been found to be reasonably accurate.  It is 

based on a monotonic force-deformation envelope obtained for a single bar embedded in a 

concrete block.  Using that relationship and a sectional analysis, a moment-rotation 

envelope for the member end at the column face is defined.  Finally, a set of hysteretic rules 

define the response of the model under cyclic loading. 

 Although the behavior of beam-column joints following cracking and bond 

deterioration is very difficult to model, a simplified model was introduced in program 

FIBERC to account for this behavior in an approximate manner. 

 The computation of member behavior using the extension-slip model implemented 

in FIBERC yielded overall good results.  In particular, the reduction of width of hysteresis 
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loops due to anchorage slip was achieved although pinching was not reproduced.  The 

unloading stiffnesses were reasonably closely estimated. 

 The effect of joint rigidity was assessed using a simple model.  The results show 

that including perfectly rigid joints in the model induces a significant increase in stiffness 

and strength of frames.  However, such effect appears to be excessive in some of the cases 

studied.  Additional simulations performed using a 50% reduction in joint stiffness suggest 

that by adding flexibility to the joints, an improved computed response may be obtained. 

 The effect of bar slip on the predicted behavior of a frame was found to be 

significant.  It affects not only the stiffness of the structure but also the strength.  In the 

particular case of repeated loads applied to a two-story frame, the strength was appreciably 

underestimated.  However, for cyclic load response prediction, a reasonable prediction of 

the results was achieved. 

 Finally, for the four-story frame, the results of the dynamic analyses confirm the 

conclusions obtained in Chapters 4 and 5 regarding the inability of the method to reproduce 

reliably the measured response during the pseudo-dynamic tests.  In contrast, the quasi-

static analysis yielded a remarkably close simulation to the experimental results. 
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CHAPTER 7 

Summary and Conclusions 

7.1  Summary 

 The behavior of reinforced concrete frame structures under seismic loads has been 

analyzed using a number of mathematical models of increasing levels of complexity.  The 

first model, represented by the program DRAIN-2DX, idealizes the plasticity in the 

members as concentrated at the member ends and governed by a simple elastoplastic 

hysteretic rule with no strength or stiffness degradation.  The second model, implemented in 

program IDARC2D, permits yielding to penetrate into the member and accounts for 

stiffness and strength degradation as well as pinching of the hysteretic loops.  The last 

model used, based on a fiber formulation, was developed as part of this study and was 

implemented in the program FIBERC. 

 Several large-scale members and frame specimens were then analyzed with the 

three models under static and dynamic loading.  It was found that, in general, the beam-

column element of program DRAIN-2DX does not reproduce the member behavior very 

well, particularly in terms of stiffness and energy dissipation.  In contrast, program 

IDARC2D generally gives a good estimate of member and frame behavior, including 

pinching of the hysteretic loops, thanks to a set of parameters used to adjust the predicted 

response.  Finally, program FIBERC simulates closely the member response when it is 

governed mainly by flexure and axial force.  It does not, however, give good predictions 

when pinching of the hysteresis loops takes place. 

 To extend and improve the performance of the fiber element model implemented in 

program FIBERC, a simple model that accounts for the effects of shear deformation was 

added.  This model is based on a truss analogy of the cracked structural members.  A series 

of runs using some of the members and frames studied previously was performed to assess 

the validity of the model as well as its influence on the predicted response. 
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 Additionally, a model that estimates the effects of anchorage slip on member 

deformation and stiffness was introduced into the program.  Again, a series of runs were 

performed on the same specimens to evaluate the effectiveness of the model as well as its 

effect on the computed response. 

7.2  Conclusions 

 The main conclusions drawn from the results of the research study are as follows: 

1. A fiber formulation of structural elements in reinforced concrete frames can accurately 

predict their seismic response when flexure and axial load govern the member 

behavior. 

2. The program IDARC2D provided a very good simulation of the response when the set 

of control parameters is properly adjusted.  This adjustment implies a previous 

knowledge of the expected behavior of the class of members to be analyzed. 

3. The program DRAIN-2DX gave a poor estimate of member response and damage and a 

crude estimate of frame response for the cases studied here. 

4. The mesured response of a full-scale four story frame tested psudo-dynamically was 

not well reproduced by any of three different models when a dynamic analysis was 

used.  In contrast a reasonably good simulation is obtained when a quasi-static analysis 

is performed. 

5. A simple model that accounts for shear deformations in the members and implemented 

in program FIBERC provided a good prediction of the stiffness reduction and hysteresis 

loops for member response.  It also had a pronounced effect on frame computed 

response improving reasonably the simulation of the experimental results. 

6. The stiffness of the beam-column joints demonstrated a large influence on frame 

response, even using a very approximate model.  It must definitely be taken into 

account in refined analysis of reinforced concrete frames. 

7. A relatively simple but complete model that accounts for the effects of anchorage slip 

of rebars, at the beam-column interface, on the member deformations achieved a good 
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prediction of cyclic response of single elements, and yielded a relative enhancement of 

results for frames. 

8. No pinching of the hysteresis loops of beams and frames was reproduced by the 

models. 

7.3  Recommendations for Future Research 

 A number of improvements on the models developed in this study need to be 

implemented.  At the material modeling level, the following items should be considered in a 

future refinement of the program: 

1. Unconfined concrete to simulate concrete spalling,  Confined concrete to simulate 

increase in concrete strength and stiffness. 

2. Improve the constitutive steel model by introducing isotropic hardening when 

significant compressive straining takes place. 

3. Model rebar buckling in compression and stirrup fracture in tension. 

4. Tension softening in concrete 

At the element model the following improvements are proposed: 

5. Implement one of the more involved models for shear deformation such as that by 

Mander (Section 5.2.3). 

6. Introduce a more sophisticated model for anchorage slip including the bond stress 

inside the joint.  It is recommended to use Tada’s model (Section 6.2) because of its 

compatibility with the fiber model implemented in program FIBERC. 

7. Introduce a model for joint distortions.  This is important particularly in members 

sustaining significant damage. 
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APPENDIX A 

FIBERC Users Guide 

A.1  Introduction 

 This program was written in the programming language FORTRAN.  It was 

compiled using Microsoft Fortran PowerStation, version 4.0 (1995) licensed to the Learning 

Resource Center of the Department of Civil Engineering at the University of Texas at 

Austin. 

 This appendix contains a guide for preparing the input data to run the program as 

well as a brief description of the analysis options currently available.  Furthermore, a 

description of the output files that can be generated is also presented.  Finally, the 

limitations of the current version of the program are listed. 

A.2  Input Data Description 

 In this section, the two input files needed to run program FIBERC are described.  

Each file is specified line by line, and repeated lines are noted.  A short definition of each 

variable is given at the end of this section. 

 All input data are specified in a free format.  Items in a single line are to be 

separated by spaces and/or commas.  No blank lines should be left between data lines.  No 

data check is performed, but an ‘echo’ file is printed with all input data read and generated 

for verification purposes  

A.2.1  Main input file 

 
File name: PROJECTNAME.DAT 
 
 1. EQFILENAME 
 2. MUNIT 
 3. MSTR 
 4. If MSTR = 1:  NST, NBAY, IGIR, NSEC(1) , NSEC(2) , NSEC(3) 
 If MSTR = 2: NBAY, NCOL, IGIR, NSEC(1) , NSEC(2) , NSEC(3) 
 5. If MSTR = 1:  (H(I),I=1,NST) 
 If MSTR = 2:  (H(I),I=1,NCOL) 
 6. (SPAN(I),I=1,NBAY) 
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 7. MODEL, DMAT, MRAY, JWR 
 8. INTEG, IPD, IPG, IMP, IGR, ISTL, HFAC, VFAC 
11. DAMP, DAMP2, NTEN, NSHD, NSLP, RJNT 
12. NELTYPE 
 
For each Element Type (ITYP=1,NELTYPE): 
13. KSEC,AD,AJD,AB,CAM,CAIM,FC,WC,IA,ISF,FY1,FU1,OVC,OVS,PER,ESH,NCF, 
 (NSF(I,J),I=1,3) 
14. Only If KSEC=3  (Fibers MUST be input from top to bottom of the 

section): 
 14.a (BCF(ICF,ITYP),IF=1,NCF) 
 14.b (DCF(ICF,ITYP),IF=1,NCF) 
 14.c (YCF(ICF,ITYP),IF=1,NCF) 
 14.d (BCCOF(ICF,ITYP),IF=1,NCF) 
15. For Each Segment (ISEG=1,3) and for NSTF=NSF(ISEG,ITYP).  

Longitudinal fibers MUST be input from top to bottom of the section. 
 (AS(ISS,ISEG,ITYP),ISS=1,NSTF) 
 (YS(ISS,ISEG,ITYP),ISS=1,NSTF) 
 AV(ISEG,ITYP),SP(ISEG,ITYP) 
 
For Each Group of Columns 
16. If MSTR = 1:
 NF1,NF2,NC1,NC2,IELTYP,CP,ALC1,ALC2,ILINGR,WGR,DA,DB,ZA,ZB 
 If MSTR = 2: NC1,NC2,IELTYP,CP,ALC1,ALC2,ILINGR,WGR,DA,DB,ZA,ZB 
 
For Each Group of Girders 
17. If MSTR = 1:
 NF1,NF2,NC1,NC2,IELTYP,CP,ALC1,ALC2,ILINGR,WGR,DA,DB,ZA,ZB 
 If MSTR = 2: NC1,NC2,IELTYP,CP,ALC1,ALC2,ILINGR,WGR,DA,DB,ZA,ZB 
 
18. NEP, DTE, DT 
 
19. NJOP 
 
For Each response requested 
20. JOP(IJOP), IT1(IJOP), IT2(IJOP), IT3(IJOP) 
 
 

A.2.2  Earthquake Record File 

 
File name: as specified in first line of input data file. 
 
1. TCOR, NPOINT, TSTEP 
 
For each point (up to NEP points) 
2. EH, EV 
 
 
 

A.2.3  Quasi-Static Load Record File 

 
File name: as specified in first line of input data file 
 
1. MLOAD 
 
For each loading (up to MLOAD lines) 
2. MFLR(ILD), MCL(ILD), MDOF(ILD) 
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For each loading step (up to NEP steps (lines) and up to MLOAD loads) 
3. DI(2,ILD) 
 
 

A.2.4  Description of Input Variables 

 

AB(20)    Width of Member Type 

AD(20)    Depth of Member Type 

ALC1    Length of segment 1 used to define longitudinal Rebars (Figure A.1) 

ALC2    Length of segment 1 used to define longitudinal Rebars (Figure A.1) 

AS(10,3,20)   Area of Steel fiber (fiber, segment, member type) 

BCF(30,20)   Width of Concrete fibers (fiber, member type) 

BCCOF(30,20)  Confined Width of Concrete fibers (fiber, member type) 

DA,DB    Joint size at member ends (Figure A.1) 

DCF(30,20)   Depth of Concrete fibers (fiber, member type) 

EER(2,2)   Earthquake Record data handling array 

EQFILENAME  File name of the earthquake record (up to 20 characters) 

FY1(200)   Yield strength of reinforcing bars (ksi) 

H(30)    Interstory heights 

HFAC    Horizontal Acceleration Scaling Factor 

IA(20)    Aggregate Type (1=Gravel Aggregate, 2=Crushed Aggregate) 

IGIR    Girder Axial Deformation (0=Yes/1=No) 

IGR    Gravity Loads  (1= Yes/0=No) 

ILINGR   Flag for Linear Analysis (1=Linear/0=Nonlinear) 

IMP    Axial-Moment Interaction  (1=Yes/0=No) 



 165

INTEG    Integration methods (1=Constant Average Accelertation) 

IPG    Change in Geometry (Update coordinates) (1=Yes/0=No) 

IPD    P-Delta  (1=Yes/0=No) 

ISF(20)    Silica content (1=With Silica Fume, 2=Without Silica Fume) 

ISTL    Steel Constitutive Model.  See Section A.3. 

    (1=Mod.Bilinear/2=Kin.Bilinear/3=Menegotto-Pinto) 

JOP(10)   Selection of Output 

KSEC    Shape of Cross Section (1=Rectangular/2=Circular/3=General) 

MODEL   Mass Matrix (2=Lumped mass/3=Consistent mass) 

MRAY    Number of mode for 2nd Critical Damping 

MSTR    Type of structure: 1=Orthogonal frame/2=Bridge 

MUNIT   Unit system (1=US/2=SI) 

NBAY    Number of bays 

NC1    Initial column line 

NC2    Final column line 

NEP    Number of earthquake points 

NF1    Initial floor 

NF2    Final floor 

NSEC(3)   Number of sections per segment 

NST    Number of Storie 

NSHD    Flag for shearing deformation effect (0=Neglected/1=Included) 

NSLP    Flag for anchorage slip effect (0=Neglected/1=Included) 

NTEN    Flag for Tension Strength of Concrete (0=No/1=Yes) 
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NTJOP(7)   Number of requests of each dynamic response type 

OVC(200)   Concrete Overstrength coefficient (previously confinement) 

OVS(200)   Steel Overstrength coefficient 

PER(LET)   Strain Hardening % for each member 

PROJECTNAME Project name to be used as output file name (4 characters) 

RJNT    Multiplier of joint size for equivalent stiffness 

WGR    Distributed load for Column or Beam group 

YCF(30,20)   Location of Concrete fiber w.r.t. mid-depth (fiber, member type) 

YS(10,3,20)   Location of Steel fiber w.r.t. to mid-depth (fiber, segment, member type) 

 

L

Segment 1

NSEC(1) sections
Segment 2

NSEC(2) sections

Segment 3

NSEC(3) sections

DA ALC1 ALC2

*ALC3 = L-DA-DB-ALC1-ALC2

DBALC3*

 

Figure A.1 - Segments and Slices for a typical member 

A.3.  Analysis Options 

 A number of analysis options are available to control the process according to user’s 

preferences by means of the following flags: 

Unit System ................. (1) U.S. CUSTOMARY  -->MUNIT=1 
     (2) SI INTERNATIONAL SYSTEM-->MUNIT=2 
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Type of Structure ........... (1) BUILDING FRAME -->MSTR=1 
     (2) BRIDGE   -->MSTR=2 
     (3) GENERAL FRAME (N/A) -->MSTR=3 
 
Element Group Response ...... (1) NONLINEAR INELASTIC -->ILINGR=0 
     (2) LINEAR ELASTIC  -->ILINGR=1 
 
Mass Matrix ................ (1) LUMPED MASS  -->MODEL=2 
     (2) CONSISTENT MASS  -->MODEL=3 
 
Girder Axial Deformation ..... (1) YES   -->IGIR =0 
     (2) NO    -->IGIR =1 
 
Damping Matrix .............. (1) RAYLEIGH DAMPING -->DMAT =1 
     (2) MASS PROPORTIONAL -->DMAT =2 
     (3) STIFFNESS PROPORTIONAL -->DMAT =3 
 
Change in Geometry ......... (1) UPDATE COORDINATES(1) YES-->IPG  =1 
     (2) NO -->IPG  =0 
 
Linearized Stability ........ (2) P-DELTA (1) YES -->IPD  =1 
       (2) NO  -->IPD  =0 
 
Axial-Moment Interaction ... (1) YES   -->IMP  =1 
     (2) NO    -->IMP  =0 
 
Gravity Loads .............. (1) YES   -->IGR  =1 
     (2) NO    -->IGR  =0 
 
Steel Constitutive Model   (1) MODIFIED BILINEAR  -->ISTL  =1 
     (2) BILINEAR KINEM. HARD. -->ISTL  =2 
     (3) MENEGOTTO-PINTO  -->ISTL  =3 
 
Tension Strength in Concrete (1) YES   -->NTEN  =1 
     (2) NO    -->NTEN  =0 
 
Shearing Deformation Effect (1) YES   -->NSHD  =1 
     (2) NO    -->NSHD  =0 
 
Anchorage Slip Effect  (1) YES   -->NSLP  =1 
     (2) NO    -->NSLP  =0 
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A.4  Unit Systems 

US and SI Unit Definition 

INPUT                       US             SI 
 
Spans, Heights ............ in             m 
Section dimensions ........ in             mm 
mass/length ............... kip-s2/in/in   kN-s2/mm/mm 
f'c, fy ................... ksi            MPa (kN/mm2) 
unit weight (concrete) .... pcf            kg/m3 
As ........................ in2            mm2 
Ys ........................ in             mm 
cP ........................ kip            kN 
Member load ............... kip/in         kN/m 
 
INTERNAL VARIABLES          US             SI 
 
Dimensions ................ in             mm 
Forces .................... kip            kN 
Areas ..................... in2            mm2 
Tangent modulus ........... ksi            MPa 
Stress .................... ksi            MPa 
Moments ................... kip-in         kN-mm 
 
OUTPUT                      US             SI 
 
Displacements ............. in             mm 
Forces .................... kip            kN 
Moments ................... kip-ft         kN-m 
 
 

A.5  Output Description 

 One or more output files are created during the run.  The file 

<PROJECTNAME>.ECH is always generated.  This file contains an echo of the input data 

(parameters and structural geometry) as well as the results of the eigenvalue problem and 

the results of the static structural analysis of the structure under gravity loads. 

 Up to 20 additional output files corresponding to different nonlinear dynamic 

responses can be generated.  Table 4.1 describes the types of responses that can be 

generated together with the file extensions and the parameters required for each selection.  

File names are made of the four characters of the variable PROJECTNAME plus a 2-digit 

counter and an extension (according to Table A.1). 
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Table A.1 - Nonlinear dynamic solution Output 

JOP FILE PARAMETERS OUTPUT 
 EXTENSION IT

1 
IT
2 

IT
3 

 

1 .DSP I 0 0 Time History of Displacement of  
Top Joint of Element I 

2 .FRC I J 0 Time History of Force J (1-6) at  
End of member I 

3 .EAI I J 0 Time History of Equivalent EA and  
EI for Member I at Section J 

4 .FCO I J K Time History of Concrete Fiber K  
of Section J of Member I 

5 .FST I J K Time History of Steel Fiber K of  
Section J of Member I 

6 .MPH I J 0 Time History of Moment-Curvature  
of Section J of Member I 

7 .LMI I J 0 Time History of Load-Moment  
Interaction of Section J, Member I 

 

A.6.  Program Limitations 

 There are a number of arrays whose dimensions are fixed and must be changed by 

modifying the code.  The most important limitations caused by such dimensions are: 

 Maximum number of stories = 30 

 Maximum number of spans = 20 

 There are several other array sizes that are defined in the include file PARAM.INC 

and are passed as parameters to all the subroutines in the program.  Therefore, these 

dimensions will change in all the program if modified in PARAM.INC (Caution must be 

exercised with some of these parameters.  See notes below). 

 Number of segments in a member, LSEG = 3(1) 

 Number of sections (slices) in a member, LSEC = 20 

 Maximum number of concrete fibers in a section, LCFB = 27(2) 

 Maximum number of steel fibers (layers) in a section, LSFB = 10 

 Maximum number of types of member types, LET = 20 

 Maximum number of members, LMEM = 25 
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 Maximum number of Joints, LJNT = 50 

 Maximum number of output response files, LOP = 30 

 Maximum Size of Mass and Stiffness Matrix, LMTRX = 45000 

A.6.1  Notes: 

(1) Several subroutines assume that there are three segments.  Therefore this parameter 

should be always set to 3. 

(2) Two of the fibers are used by the program for inclined concrete struts of the “Cyclic 

Inelastic Strut-and-Tie” model for inelastic shear deformations.  Therefore, the 

actual number of available longitudinal fibers is LCFB minus 2. 
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APPENDIX B 

Details and Damage of Full-Scale Four-Story Building 

B.1  Introduction 

 This appendix contains the reinforcement details of the full-scale four-story 

building tested at the European Laboratory for Structural Assessment (ELSA) that was 

described in Section 4.5.  Section B.2 presents sketches based on the technical drawings (4-

14) where the reinforcing bars utilized are specified.  In addition, a few pictures taken from 

reference 4-14 are reproduced in Section B.3 to give an idea of the experimental setup.  

Finally, more pictures from the same reference, displaying the damage sustained by the 

building during the test, are presented in Section B.4. 

B.2  Reinforcement Layout 

 Figure B.1 shows both longitudinal and transverse reinforcement for the columns of 

the interior frame of the building.  Bar nominal diameters, stirrup spacing, and length of the 

constant-spacing stirrup zones are all in millimeters. The area and strength of the bars as a 

function of their nominal diameters are given in Table 4.2, while the cross sections of the 

columns are shown in Figure 4.38.  It must be noticed that the longitudinal bars and stirrups 

of the right column are identical to those of the leftmost column. 

 Similarly, Figure B.2 presents the transverse and longitudinal reinforcement for the 

beams of the same frame.  All beams exhibit the same stirrup pattern shown in the lower 

part of that figure.  A typical cross section of a beam and slab is shown in Figure 4.37. 
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Figure B.1 - Column Reinforcement Layout (adapted from 4-14) 
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Figure B.2 - Beam Reinforcement Layout (adapted from 4-14) 
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B.3  Member Flexural Strength and Stiffness 

 A moment-curvature sectional analysis of all elements of the building was 

performed.  Equivalent bilinear behavior for each element was obtained as illustrated in 

Figure B.3.  The elastic stiffness (EI)o and post-elastic stiffness (EI)p were taken as the 

average of the exact M- curve before and after the yielding region, respectively. 



M

y, My
y, Mu

(EI)p

(EI)o

 

Figure B.3 - Actual and Idealized Moment-Curvature Relationships 

 Based on the ultimate point (u, Mu), (EI)o and (EI)p an equivalent yield point (y, 

My), using Equations B.1 and B.2, was obtained. 

 
   




y

u p u

o p

M EI

EI EI





      (B.1) 

 M EIy o y          (B.2) 

 These computations were performed for eight column types and eight beam types as 

shown in Figure B.4.  Tables B.1 and B.2 present the results for the columns and beams, 

respectively.  In these tables, the stiffness (EI) is given in kN-m2, the moment of inertia is 

given in m4, the elastic modulus E is given in kN/m2 and the moment is given in kN-m (rb is 

nondimensional). 
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Figure B.4 - Beam and Column Type Numbers 

 

Table B.1 - Stiffness and Strength of Columns 

Col (EI)o (EI)p I Eo rb My Mb/My Pyc Pb/Pyc Pyt 

C1 18100 190 0.00213 7.231106 0.011 241 1.72 7522 0.25 1458 

C1 12750 150 0.00213 7.231106 0.011 159 2.29 7032 0.27 933 

C2 12700 130 0.00213 5.953106 0.010 159 2.23 6763 0.28 933 

C3 12400 100 0.00213 5.813106 0.008 158 1.82 4851 0.29 933 

C4 12700 130 0.00213 5.953106 0.010 160 2.19 6575 0.28 933 

C5 34900 250 0.00342 8.699106 0.007 414 1.55 9840 0.24 2187 

C5 24550 150 0.00342 8.699106 0.007 277 2.01 9105 0.27 1400 

C6 24500 160 0.00342 6.738106 0.007 276 1.96 8764 0.27 1400 

C6 21550 130 0.00342 6.738106 0.007 236 2.21 8560 0.28 1182 

C7 21100 160 0.00342 6.175106 0.008 229 1.80 6140 0.29 1182 

C8 21500 130 0.00342 6.292106 0.006 236 2.18 8321 0.28 1182 

 



 176

 
Table B.2 - Stiffness and Strength of Beams 

Beam End Direction (EI)o (EI)p I Eo rb My 

B1 I, J Positive 18400 310 0.00467 4.336106 0.016 147 

B1 I, J Negative 22100 300 0.00467 4.336106 0.016 222 

B2 I Positive 18400 270 0.00467 4.438106 0.017 145 

B2 I Negative 20400 360 0.00467 4.438106 0.017 195 

B2 J Positive 21950 350 0.00467 4.438106 0.017 177 

B2 J Negative 22150 400 0.00467 4.438106 0.017 218 

B3 I, J Positive 18400 310 0.00467 4.326106 0.016 147 

B3 I, J Negative 22000 310 0.00467 4.326106 0.016 220 

B4 I, J Positive 18350 180 0.00467 3.956106 0.011 145 

B4 I, J Negative 18600 220 0.00467 3.956106 0.011 173 

B5 I Positive 12900 320 0.00467 3.284106 0.018 102 

B5 I Negative 17550 210 0.00467 3.284106 0.018 175 

B5 J Positive 12900 260 0.00467 3.284106 0.018 102 

B5 J Negative 18000 240 0.00467 3.284106 0.018 178 

B6 I, J Positive 12800 130 0.00467 2.907106 0.012 100 

B6 I, J Negative 14350 200 0.00467 2.907106 0.012 132 

B7 I Positive 12800 110 0.00467 2.762106 0.013 104 

B7 J Negative 11000 140 0.00467 2.762106 0.013 98 

B7 I Positive 12900 250 0.00467 2.762106 0.013 104 

B7 J Negative 14900 160 0.00467 2.762106 0.013 146 

B8 I, J Positive 12800 110 0.00467 2.548106 0.011 100 

B8 I, J Negative 11000 140 0.00467 2.548106 0.011 98 
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B.4  Experimental Setup 

 Figure B.5 shows a general view of the ELSA laboratory together with the full-scale 

four-story building tested.  At its left side, a smaller steel building is also being tested.  The 

large reaction wall, used to resist the actuator reactions, is behind the two buildings. 

 

Figure B.5 - Test Setup (taken from 4-14) 

 In Figure B.6 a close-up of one of the sides of the building is shown.  Steel 

components were used to attach the actuator rams to the floor slabs. 
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Figure B.6 - Detail of Actuators on one side of the building (taken from 4-14) 
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B.5  Visual Damage of the Building 

 In this section a few pictures taken after the test show the damage sustained by the 

structural elements.  It must be pointed out, however, that a very low level of visual damage 

was reported by the researchers (4-14) particularly considering the severity of the ground 

motion applied to the structure. 

 Figure B.7 shows diagonal cracks in a beam-column joint.  The crack inclination is 

approximately 45.  No damage is apparent at the interface of the joint and the beams. 

 

Figure B.7 - Cracking at Beam-Column Joint (taken from 4-14) 

 In Figure B.8 torsional cracking of the transverse beams, near the beam-column 

joint, is shown. 
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Figure B.8 - Torsional Cracking at Beam End (taken from 4-14) 

 Figure B.9 shows flexural cracking at the ends of beams and columns.  However, 

these cracks are narrow and apparently easy to repair.  This confirms the low level of 

damage sustained by the structure.  No spalling occurred in any beam or column. 
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Figure B.9 - Flexural Cracking at Beams and Columns (taken from 4-14) 
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